MANITOBA FLOODWAY AUTHORITY

RED RIVER FLOODWAY EXPANSION PROJECT FINAL DESIGN – WORK PARCEL 2

2008 CONSTRUCTION SURFACE WATER MONITORING

FINAL REPORT MARCH 2009

KGS Group Project: 05-1100-01 Reference Number: .9905241 NM7

KGS Group Prepared by:

KGS Group Reviewed by:

Katie Sinclair, B.Env.Sc. Environmental Scientist

Dave B. MacMillan, P.Eng. Principal

3rd Floor 865 Waverley Street Winnipeg, Manitoba R3T 5P4 204.896.1209 fax: 204.896.0754 www.kgsgroup.com Kontzamanis Graumann Smith MacMillan Inc.

March 30, 2009

File No. 05-1100-01.19.06.03

Manitoba Floodway Authority Room 200, 155 Carlton Street Winnipeg, Manitoba R3C 3H8

ATTENTION: Mr. Doug Peterson, P. Eng. Manager of Environmental Services

RE: Red River Floodway Expansion Project 2008 Construction Surface Water Monitoring Report Final Report

Dear Mr. Peterson:

Please find enclosed twenty (20) paper copies and one (1) electronic copy of the Final Report for the 2008 Construction Surface Water Monitoring of the Red River Floodway Expansion. An electronic copy of each individual Final Monthly Monitoring Report from January to December 2008 is also provided, as supporting documents for the MFA web page.

This annual construction report describes the analysis results for samples collected from the Red River, Floodway Channel and the drains flowing into the Floodway and along the West Dyke during the 2008 construction time period. The data includes the monthly and event-based (level I) monitoring.

We sincerely appreciate the opportunity to provide ongoing services on this project. If you have any questions regarding this report please contact Ms. Katie Sinclair, or the undersigned.

Yours truly,

MAt

Dave MacMillan, P. Eng. Project Manager

KS/dbm/mlb Enclosure

EXECUTIVE SUMMARY

The Red River Floodway Expansion Project Screening Report prepared for Infrastructure Canada concluded that the effects of the project on surface water quality are not likely to be significant provided that the mitigation measures proposed are followed and that a monitoring and follow-up plan for surface water quality is submitted by the Manitoba Floodway Authority. A baseline surface water quality monitoring program was undertaken in the spring – summer of 2005, prior to the start of construction of the Floodway Expansion Project. Additionally a winter baseflow program was conducted in 2005 prior to construction, to monitor the groundwater discharge into the Floodway Channel when there was no surface water contribution. The data obtained during the baseline monitoring program forms the basis for comparison to this 2008 construction monitoring report and all future construction monitoring reports that will be compiled at the end of each construction year. Comparison of the 2008 construction monitoring to baseline data allows the effects of construction to be compared to the applicable compliance criteria and to predictions made in modelling effects.

The surface water quality monitoring program for the 2008 construction year was conducted from January to December 2008 in conjunction with the on-going construction activities. This 2008 construction report outlines the analysis results for samples collected from the Red River at the Inlet and Outlet, 11 locations along the Floodway Channel including the upstream and downstream ends of the construction and revegetation zones, 11 of the outfall drains flowing into the Floodway and at 2 drains along the West Dyke. The 2008 construction monitoring data is summarized and compared to the data presented in the baseline surface water monitoring report.

There were twelve (12) monthly monitoring events, with one conducted each month following precipitation events or near the end of the month if a substantial precipitation event had not yet occurred. There was no spring or summer flood during 2008. There were fifteen (15) level I event-based monitoring events conducted between May and November, 2008 in response to precipitation levels greater than 10 mm. Additionally, an Outlet TSS Monitoring Program was conducted at the Floodway Channel Outlet from March 17 to 31, 2008 in response to the removal of the cofferdam within Contract CE1.

On-going construction contracts for the Floodway at the start of January 2008 consisted of Channel Contracts; C-3A (Stn 12+430 – 19+200 west side), C-3B (Stn 12+430 – 19+200 east side), C3C (Stn 19+715 – 20+900), C5 (Stn 25+970 – 30+140), C7A (Stn 35+100 – 40+590 west side), C7B (Stn 35+200 – 40+900 east side), C8A (Stn 40+865 – 48+500 west side) and C8B (Stn 40+900 – 50+430 east side); Bridge Contracts for PTH 59 South (T4, Stn 12+250), CNR Redditt (T11, Stn 25 + 880), CPR Emerson (T12/15, Stn 11 + 200) and CPR Keewatin (T14, Stn 30 + 220). The remaining Floodway contracts were completed prior to the start of 2008, except for the Channel contract C-6C (Stn 33+670 – 35+060 west side) that started construction during July 2008. As part of the Channel contracts during 2008, seeding and fertilizer applications occurred from May to November. Earthworks construction contracts for the West Dyke during 2008 included W6 that was completed in that year and W12, W22, W23 and W24 that are still active. Details of the construction contracts and activities that occurred during each month are summarized in each of the individual monthly monitoring reports, NM7.1 – January to NM7.12 – December, 2008.

Construction monitoring data for the key water quality parameters of interest, identified and discussed in the baseline surface water monitoring report, were compared to the baseline data under non-flood/unfrozen and non-flood/frozen conditions. These parameters included total suspended solids, nutrients (total phosphorus, ammonia, nitrate plus nitrite and potassium), specific conductance, major ions (sodium and chloride), and *E.Coli* for bacterial concerns.

Benzene, toluene, ethylbenzene and xylenes (BTEX) and hydrocarbon fractions F1 to F4 were also analyzed when samples could be collected at the upstream and downstream of construction locations during each monthly monitoring. The April monthly monitoring (spring melt) laboratory analysis also included phenoxy acid herbicide screen (2,4-D, bromoxynil, dicamba, MCPA and picloram), AMPA and glyphosate, at the upstream and downstream of revegetation locations.

Results of the 15 level I event-based monitoring events conducted between May and November have typically indicated very small changes in TSS concentration in the Red River during the 2008 construction year, except for the June 6 monitoring following a rainfall close to a 5-year storm. The mass balance using the Red River flows and the laboratory TSS concentrations indicated an approximate increase in the TSS concentrations of 22 mg/L or 40%. This increase in TSS concentrations was within the CCME criteria of an allowable increase of 25 mg/L based on the background concentrations being <250 mg/L (clear flow). Nearly all the other level I event based monitoring measured a change of less than 1.0% and over half of these were a decrease in TSS concentration, therefore, no level II event-based monitoring was required during the 2008 construction year.

Outlet TSS event-based monitoring was conducted over a sixteen day period beginning on March 17, 2008 and ending on March 31, 2008, with a day of baseline TSS monitoring conducted on March 14, 2008 prior to the commencement of any construction activities as part of the cofferdam removal at Contract CE1. High TSS concentrations were measured in the Red River upstream of Outlet on March 17 however, these are not a concern as they represent background conditions. The results of the Outlet TSS event-based monitoring indicated that the removal of the cofferdam from Contract CE1 at the Outlet Structure did not elevate TSS levels in the Red River above the CCME Freshwater Aquatic Life criteria.

Several of the key water quality parameter concentrations, in particular electrical conductivity, potassium, sodium, chloride and *E.Coli* varied spatially throughout the Floodway Channel for a given monthly monitoring during both the unfrozen and frozen non-flood conditions. Additionally they could vary temporally (with time) between the monthly monitoring events, at any given sample location.

Within the non-flood unfrozen condition in 2008, concentrations of most parameters measured in the Floodway Channel were generally within the summer baseline concentrations. During some of the months, in particular during April (spring melt), there were a few locations where parameters were elevated above the baseline concentrations. During June and September, the TSS concentrations in the Floodway Channel were elevated above the baseline concentrations at several locations, including at the Outlet. In comparison, *E.Coli* concentrations were typically elevated above baseline concentrations each month at most Floodway Channel Locations. For all of the parameters these concentrations elevated above baseline in the Floodway were typically lower than the concentration in the Red River, except specific conductance and chloride concentrations. Therefore, the elevated concentrations in the Floodway Channel would have no effect on concentrations in the Red River or result in dilution if anything.

During the non-flood unfrozen condition monthly monitoring events, parameter concentrations measured in the Red River downstream of the Outlet were typically similar to the background concentrations upstream of the Outlet, ranging from slightly lower to slightly higher, although larger downstream increases were measured for TSS, ammonia, potassium and E.Coli concentrations. The TSS concentration increases measured in the Red River downstream of the Outlet were all less than the CCME criteria of an allowable increase of 25 mg/L and therefore not a concern. Although the September monthly laboratory results indicate an increase of 77 mg/L 500 m downstream of the Outlet, the mass balance calculations with the measured TSS concentrations and flows indicate that only an approximate increase in TSS concentration of 0.7 mg/L would result in the Red River from the Floodway Channel inputs, indicating that these values are within CCME criteria. Although increases in potassium and E.Coli were measured the concentrations were within baseline concentrations. Additionally the elevated potassium and E.Coli concentrations have no basis for evaluation, as there is no applicable CCME criterion. The ammonia concentrations measured in the Red River during June and October resulted in exceedances of the CCME un-ionized ammonia criteria both upstream and all locations downstream of the Outlet, whereas during July and September there were only a couple of exceedances. These exceedances are not a result of construction, because the background concentrations upstream of the Outlet and baseline concentrations, also exceeded the CCME criteria.

Concentrations of most parameters measured in the Floodway Channel were within the winter baseline concentrations (or the summer baseline if there was no winter baseline) except for one or two samples during the monthly monitoring events within the non-flood frozen condition. In particular concentrations of TSS, specific conductance, ammonia and potassium were higher than baseline concentrations in the Floodway Channel downstream of the Grande Pointe drain during the January monitoring. Likewise ammonia and E.Coli were elevated at the Keewatin and Spring Hill weir locations during the January monitoring. The elevated TSS concentration did not result in an exceedance of the CCME criteria and was likely a result of disturbing the channel bottom while drilling through the ice cover to collect the sample. The elevated ammonia concentrations did not result in an exceedance of the CCME un-ionized ammonia criteria. The elevated potassium concentrations in the Floodway were not related to construction activities, as the fertilizer applied over the summer did not contain potassium. The elevated E.Coli concentrations were not attributed to construction, as there were no construction activities that would release bacteria into the construction area. Additionally, the elevated specific conductance, potassium and E.Coli concentrations in the Floodway channel have no basis for evaluation, as there are no applicable CCME criteria.

Parameter concentrations measured in the Red River downstream of the Outlet during the nonflood frozen condition were typically similar to the background concentrations upstream of the Outlet ranging from slightly lower to slightly higher, although concentrations measured during December tended to show larger increases. In particular concentration increases were measured for TSS, total phosphorus, ammonia and *E.Coli*. During December minor increases in TSS concentrations (4.5%) were measured in the Red River downstream of the Outlet compared to upstream of the Outlet, however this is within the allowable CCME criteria of a 10% increase. The ammonia concentrations in the Red River downstream of the Outlet were typically higher compared to the background concentration in the Red River upstream of the Outlet, except during March when they were lower. Only the ammonia concentrations measured during March resulted in un-ionized ammonia concentrations that exceeded the CCME criteria both upstream and downstream of the Outlet. The exceedance downstream is not a result of construction because background concentrations upstream at this time and concentrations

measured during baseline monitoring also exceeded the CCME criteria. Additionally, the concentration increases in the Red River were not due to construction activities within the Floodway Channel because all concentrations in the Floodway Channel were lower than Red River concentrations.

Because there were active or recently completed construction activities in the vicinity of the Manness and Domain Drains the analytical results from the West Dyke drain monthly monitoring were assessed. These drains were both sampled during the April monthly monitoring that coincided with the spring melt. During the rest of the year because of low flow and frozen conditions the Mannes Drain could only be sampled during October and November and the Domain Drain could only be sampled during May, June and November. Concentrations of most parameters measured were within the baseline concentrations during each of these monthly monitoring events. Specific conductance, sodium and chloride concentrations, however, were elevated above baseline concentration in the Domain Drain during the June monthly monitoring was also elevated above baseline concentrations. These elevated concentrations were not a result of construction because the activities in the vicinity of the Domain Drain prior to May and June consisted of riprap application that was completed in March 2008.

Based on the results of the 2008 Construction monitoring events, recommendations and refinements for the ongoing monitoring should include the following;

- Continued monitoring at all of the current sample locations (including the drain locations upstream of the perimeter ditching when a drain is within an area of construction activities), following the established monthly monitoring schedule, with event-based monitoring conducted as required for the 2009 surface water monitoring program.
- The event-based monitoring in 2009 should continue to follow the protocol used in 2008 that incorporated revisions made in 2006, based on the results of a review of precipitation levels and measured TSS increases. The 2008 protocol was reviewed near the end of the 2008 monitoring program (with no changes made) and should be reviewed again during the 2009 monitoring program and revised if required as construction contracts near completion.
- The reporting protocol for the 2009 surface water monitoring program should continue to follow the slight modifications made for the start of 2008 to flag potential increases in TSS concentrations more rapidly. This included completing a level I event-based worksheet for each of the monthly monitoring events to provide an indication as to whether the sediment concentration in the Floodway will have a potential impact on the Red River downstream of the Floodway Outlet. If the worksheet indicates no potential impact then the results would be reported in the monthly monitoring report, whereas, if a potential impact is identified then MFA would be notified immediately and the laboratory would be contacted to request the TSS analysis results as soon as possible. Appropriate measures would then be developed with MFA based on the TSS laboratory results.

TABLE OF CONTENTS

PAGE

EXECUTIVE SUMMARY	i
1.0 INTRODUCTION	
1.1 INTRODUCTION 1.2 SCOPE OF WORK	
2.0 METHODOLOGY	3
 2.1 OVERVIEW	3
3.0 RESULTS	10
3.1 HYDROLOGICAL CONDITIONS. 3.2 WATER QUALITY 3.2.1 Total Suspended Solids 3.2.2 Specific Conductance. 3.2.3 Total Phosphorus 3.2.4 Ammonia (NH ₃) 3.2.5 Nitrate + Nitrite-N. 3.2.6 Potassium. 3.2.7 Sodium 3.2.8 Chloride 3.2.9 Iron 3.2.10 Petroleum Hydrocarbons. 3.2.11 Bacterial 3.2.12 Herbicides	12 13 17 19 21 24 24 27 29 30 32 33 34
4.0 SUMMARY AND CONCLUSIONS	37
5.0 RECOMMENDATIONS	40
6.0 REFERENCES	41
TABLES FIGURES	

APPENDICES

X:\projects\2003\03-1100-01\General\(.19) SiteSurv&Invest\(.06) Environmental\(.03) SW Monitoring\Docs\Reports\NM7\Yearly-Final\(MFA)_NM7.2008ConstructionSWMonitoring_FNLREPORT_KS_Mar3009(1).doc

TABLES

- NM7-1 Field Surface Water Chemistry
- NM7-2 General Water Quality
- NM7-3 Petroleum Hydrocarbons in Surface Water
- NM7-4 Bacteria in Surface Water
- NM7-5 Herbicides in Surface Water
- NM7-6 Level I Event Based TSS Monitoring Review

FIGURES

- NM7-1 Floodway Channel Sample Locations
- NM7-2 West Dyke Sample Locations
- NM7-3 Total Suspended Solids Non-Flood Unfrozen Condition
- NM7-4 Total Suspended Solids Non-Flood Frozen Condition
- NM7-5 Historical Water Quality Comparison Red River at Floodway Outlet Total Suspended Solids
- NM7-6 Specific Conductance Non-Flood Unfrozen Condition
- NM7-7 Specific Conductance Non-Flood Frozen Condition
- NM7-8 Total Phosphorus Non-Flood Unfrozen Condition
- NM7-9 Total Phosphorus Non-Flood Frozen Condition
- NM7-10 Historical Water Quality Comparison Red River at Floodway Outlet Total Phosphorus
- NM7-11 Ammonia Non-Flood Unfrozen Condition
- NM7-12 Ammonia Non-Flood Frozen Condition
- NM7-13 Historical Water Quality Comparison Red River at Floodway Outlet Ammonia
- NM7-14 Nitrate + Nitrite–N Non-Flood Unfrozen Condition
- NM7-15 Nitrate + Nitrite–N Non-Flood Frozen Condition
- NM7-16 Historical Water Quality Comparison Red River at Floodway Outlet Nitrate + Nitrite–N
- NM7-17 Potassium Non-Flood Unfrozen Condition
- NM7-18 Potassium Non-Flood Frozen Condition
- NM7-19 Historical Water Quality Comparison Red River at Floodway Outlet Potassium
- NM7-20 Sodium Non-Flood Unfrozen Condition
- NM7-21 Sodium Non-Flood Frozen Condition
- NM7-22 Chloride Non-Flood Unfrozen Condition
- NM7-23 Chloride Non-Flood Frozen Condition
- NM7-24 E.Coli Non-Flood Unfrozen Condition
- NM7-25 E.Coli Non-Flood Frozen Condition

LIST OF APPENDICES

- Appendix A Surface Water Monitoring 2008 Sampling Program.
- Appendix B Manitoba Water Stewardship Weekly River Flow Report Red River near Selkirk
- Appendix C Environment Canada, Winnipeg Int'l A, Manitoba Daily Data Reports, January -December 2008

1.0 INTRODUCTION

1.1 INTRODUCTION

The Environmental Impact Statement (EIS) prepared by TetrES Consultants Inc./Intergroup Consultants Ltd.⁽¹⁾ presented the assessment of potential effects on surface water quality resulting from the Floodway Expansion Project (Project). The EIS identified potential effects related to sedimentation associated with Project construction and the use of fertilizers (containing phosphorus, nitrogen and potassium), herbicides (glyphosate and 2,4-D amine) or spills of chemicals during Project construction or maintenance.

The EIS stated that potential effects on surface water quality would be mitigated through the use of appropriate construction management practices that would be specified in the Construction Phase Environmental Protection Plans (CPEPP) developed for each construction site. Additionally, as a component of the monitoring plans for the CPEPP, potential changes in surface water quality would be monitored during construction. Further, in the Red River Floodway Expansion Project Screening Report prepared for Infrastructure Canada ⁽²⁾ the responsible authorities concluded that the effects of the project on surface water quality are not likely to be significant provided that the mitigation measures proposed are followed and that a monitoring and follow-up plan for surface water quality is submitted by the Manitoba Floodway Authority (MFA).

A baseline surface water quality monitoring program ⁽³⁾ was undertaken in the spring – summer of 2005, prior to the start of construction of the Floodway Expansion Project. It consisted of sampling during early spring (April), the peak spring flow period (April), summer emergency operation (June) and during typical summer monthly (May to August) flow conditions. Additionally a winter baseflow program ⁽⁴⁾ was conducted in 2005 prior to construction, to monitor the groundwater discharge into the Floodway Channel when there was no surface water contribution. During the baseflow program, samples were collected on March 2, 2005 and these water quality results are considered representative of winter baseline data.

The data obtained during the baseline monitoring program forms the basis for comparison to this 2008 construction monitoring report and all future construction monitoring reports that will

be compiled at the end of each construction year. Comparison of the 2008 monthly construction monitoring data (January to December), collected during typical monthly flow conditions, to baseline data will allow the effects of construction to be compared to the applicable compliance criteria and to predictions made in modelling effects. As well, the effectiveness of proposed mitigation measures will be assessed.

1.2 SCOPE OF WORK

The scope of work for the 2008 construction Surface Water Monitoring program conducted by KGS Group included the following:

- Collect **monthly** surface water quality data for the Red River, Floodway Channel, Drains that flow into the Floodway Channel and Drains that cross the West Dyke, preferably following a precipitation event or at the flood peak during Red River flood conditions;
- Collect event-based surface water quality data for compliance monitoring of applicable parameters (TSS, nutrients, herbicides or hydrocarbons) from the Floodway Channel upstream and downstream of the overall construction area, the Red River downstream of the Outlet and any additional required locations following precipitation events greater than 10 mm or a spill; and
- Provide an assessment of surface water quality comparing results of construction monthly and event-based compliance monitoring to baseline water quality and summarize in a 2008 construction monitoring report in order to;
 - compare predictions made in modelling effects
 - to assess the effectiveness of proposed mitigation measures and adapt if necessary
 - adapt the construction monitoring program in response to data and changes in mitigation measures

2.0 METHODOLOGY

2.1 OVERVIEW

The field investigation program for the 2008 construction year was conducted from January to December 2008 in conjunction with the on-going construction activities. There were twelve (12) monthly monitoring events, with one conducted each month following precipitation events as there was no spring or summer flood during 2008. There were fifteen (15) level I event-based monitoring events conducted between May and November, 2008 in response to precipitation levels greater than 10 mm. No level II event-based monitoring was required during the 2008 construction year as the results of the level I event-based monitoring indicated that the potential increase in sediment concentration in the Red River was within the Provincial Guidelines. An Outlet TSS Monitoring Program was conducted at the Floodway Channel Outlet from March 17 to 31, 2008 in response to the removal of the cofferdam within Contract CE1. No spill event-based monitoring was required because the spills that occurred during 2008 were typically small, contained and cleaned up with no potential run-off to the Floodway Channel.

The methodology used for the field program conducted by KGS Group followed the general methodology outlined in the Surface Water Monitoring – 2008 Sampling Program (Appendix A) that incorporated modifications made following the 2005 baseline and 2005, 2006, and 2007 construction monitoring programs. Deviations and changes from the general methodology used during the 2008 construction monitoring are described below.

2.2 SAMPLING LOCATIONS

The sample locations for the 2008 construction monitoring program are outlined on Figure NM7–1 and Figure NM7–2, listed in table NM7-1 and described as follows;

Red River at Inlet – Upstream of the Floodway Channel along the west shore of the river, the 3 replicate samples (S-01, S-02 and S-03) were not sampled during the 2008 monitoring program because there was no river water entering into the Floodway Channel at the Inlet during any of the monthly monitoring events.

Red River at Outlet – Upstream of the Floodway Outlet along the east shore (S-34) and downstream of the Outlet at 4 locations along the east shore at 0.5, 1, 2 and 3 kilometers (S-30, S-31, S-32 and S-33, respectively) were sampled during each of the twelve (12) monthly monitoring events. S-31 and S-34 were also sampled during each of the fifteen (15) level I event-based monitoring events. Additionally, S-30, S-31, S-33 and S-34 were sampled during the Outlet TSS Monitoring Program. These 5 river locations were sampled from the shore for safety reasons, except during the months of January to March and December at which time the river was covered by at least 6 inches of ice that had to be augured through to collect the samples.

Floodway Channel – The Floodway Channel downstream of the Inlet (S-04) was not sampled during the 2008 monitoring program because there was no river water entering into the Floodway Channel at the Inlet during any of the monthly monitoring events. There are a total of 6 other locations in the Floodway Channel that included; downstream of the Grande Pointe Diversion drop structure (S-13), downstream of the North Bibeau Drain drop structure (S-14) and at the four weir locations; Keewatin Weir (S-21), Springfield Weir (S-23), Dunning Weir (S-25) and PTH# 44 Weir (S-28). Each of these locations was sampled during all twelve (12) of the monthly monitoring events with a few exceptions. Location S-13 was not sampled during the February and March monthly monitoring and S-25 was not sampled during the March monthly monitoring because the water was frozen to the bottom of the channel.

Outfall Sources – During the non-flood frozen condition from January to March, November and December none of the 11 outfalls that drain into the Floodway Channel were sampled because the frozen condition prevented any water from flowing into the Floodway Channel, except during November. In November each of the 11 outfalls were sampled except for the Deacon Reservoir Drain (S-08) that had no flow.

During the non-flood unfrozen condition from April to October Deacon Reservoir Drain (S-08) was not sampled at all, and the Seine River Syphon Overflow (S-05) was only sampled in June, July and October. The Country Villa Estates Drain (S-11) was not sampled in April and May, the Grande Point Diversion Drop Structure (S-06) was not sampled during September and the Ashfield Drain Drop Structure (S-27) was not sampled in July because they had no flow discharging into the Floodway Channel. The Kildare Trunk-Transcona Storm Sewer Outlet (S-

12) could not be sampled during April because the flap gate was inundated by the spring melt run-off in the Floodway Channel.

West Dyke Drains – The Manness (S-35) and Domain (S-36) Drains were both sampled on the downstream side of the West Dyke during the April monthly monitoring that coincided with the spring melt. The Mannes Drain was not sampled during any other monthly sampling in 2008, except during October and November. Likewise the Domain Drain was not sampled during any other monthly sampling in 2008, except during May, June and November. The construction activities along the West Dyke in the vicinity of the Manness drain began at contracts W-22 and W-23 at the end of July 2008 and continued until the temporary suspension of activities at the end of November. Construction activities in the vicinity of the Domain drain were previously completed at contracts W-13 and W-14 during November 2007. The only activities in the vicinity of the Domain drain during 2008 included rip-rap placement (W-17) during January to March and road topping (W-18) completed during July 2008. Because there were active or recently completed construction activities the analytical results from the West Dyke drain monthly monitoring will be discussed in this construction monitoring report.

Floodway Channel Construction Areas – In addition to the sample locations shown in figures NM7.1 and NM7.2, samples were also collected from the Floodway Channel upstream and downstream of construction activities (CON U/S and CON D/S, respectively) and upstream and downstream of re-vegetation activities (VEG U/S and VEG D/S, respectively). These sample locations were based on the construction contracts, the extent of the contracts along the Floodway Channel and the construction activities that occurred for each month as summarized in each of the monthly monitoring reports, NM7.1 – January to NM7.12 – December.

For the entire 2008 monitoring program the upstream end of construction was designated at Station 11+000 associated with the construction activities in the Channel at the CPR Emerson bridge contract (T12, Station 11+200). Samples were only collected from this upstream of construction location during the April, June, July, October and November monthly monitoring and 11 of the 15 level I event-based monitoring events because there was either no flow or frozen conditions during the other monthly and event-based monitoring.

The location downstream of construction that was previously established at Station 50+500 during August 2007, was used to collect the samples during the January to June monthly monitoring and 6 of the 15 level I event-based monitoring events. This location was the furthest downstream in the Floodway Channel while still being upstream of the Outlet structure. To measure any potential effects associated with construction activities at the Outlet structure, the location downstream of construction was moved to Station 50+900, downstream of the Outlet structure structure. Samples were collected from this new location for the remaining monthly monitoring and level I event-based monitoring events during 2008.

Seeding during the 2008 construction year began at Contract C-3B in May, however there is potential for runoff of fertilizer resulting from snowmelt and rain runoff from areas seeded previously during 2007. The area previously seeded during 2007 extended from the CPR Emerson bridge contract (T12 Station 11+200) to the end of the Floodway Channel. The sample locations upstream and downstream of the revegetation zone were the same locations used for upstream and downstream of construction.

2.3 SAMPLING PROTOCOL

Sample Frequency – The monthly monitoring events were conducted once per month from January to December, typically following a precipitation event. Fifteen (15) level I event-based monitoring events were conducted between May and November in response to precipitation events of 10 mm as outlined in Appendix A. The Outlet TSS Monitoring Program was conducted over a sixteen day period beginning on March 17, 2008 and ending on March 31, 2008, with a day of baseline TSS monitoring conducted on March 14, 2008 prior to the commencement of any construction activities as part of the cofferdam removal at Contract CE1.

Sampling Protocol – The protocol followed the U.S. Environmental Protection Agency (EPA), Office of Water Quality (November, 1997, EPA 841-B-97-003) Monitoring Water Quality, Chapter 5 Water Quality Conditions ⁽⁵⁾ as outlined in Appendix A.

Field Measurements – pH, temperature, conductivity, turbidity and water depth were obtained during each of the twelve monthly monitoring and fifteen level I event-based monitoring events,

as outlined in Appendix A. During the Outlet TSS Monitoring Program turbidity was obtained approximately hourly at all four sample locations between the hours of 6:00 AM and 7:00 PM.

Laboratory Analysis – The analysis package at all of the locations sampled during each of the monthly monitoring events included the following;

- Routine extractable (iron, manganese, fluoride, pH, total dissolved solids, sulphate, nitrate-nitrite, calcium, potassium magnesium, sodium, hardness, conductivity, chloride, total alkalinity, bicarbonate, carbonate and hydroxide)
- Total suspended solids (TSS) and turbidity
- Ammonia
- Ortho phosphorus, total phosphorus, total dissolved phosphorus
- Dissolved organic carbon (DOC), total organic carbon (TOC)
- Total Kjeldahl nitrogen (TKN)
- Total coliform and *E.Coli* by m-Coli Blue Membrane Filtration method

In addition to the above, at the upstream and downstream of construction locations during each monthly monitoring benzene, toluene, ethylbenzene and xylenes (BTEX) and hydrocarbon fractions F1 to F4 were also analyzed. During the April monthly monitoring (spring melt) laboratory analysis also included phenoxy acid herbicide screen (2,4-D, bromoxynil, dicamba, MCPA and picloram), AMPA and glyphosate, at the upstream and downstream of revegetation locations.

As part of the level I event-based monitoring, laboratory analysis of TSS and nutrients (pH, nitrate – nitrite+N, ammonia, total Kjeldahl nitrogen, ortho phosphorus and total dissolved phosphorus) was conducted for the samples collected in the Floodway Channel upstream and downstream of construction and on the Red River upstream and downstream (at S-31) of the Outlet. No laboratory analysis of herbicides (phenoxy acid herbicide screen, AMPA and glyphosate) was required during the event-based monitoring as there were no herbicides applied during the 2008 construction year.

As part of the Outlet TSS Monitoring Program, laboratory analysis of TSS was conducted for the samples collected three times per day at approximately 10:00 AM, 1:00 PM and 6:00 PM on the Red River upstream and downstream of the Outlet.

Quality Assurance/Quality Control Program – Quality Assurance and Quality Control (QA/QC) methods have been adopted to ensure that all samples are representative of the site. In the field, quality was assured by using experienced field staff trained to follow the U.S. EPA sampling protocol and ensuring that all sampling equipment was sterilized and/or rinsed with the sampling media a minimum of three times to eliminate cross contamination of samples. Disposable latex gloves were used for every sample retrieved. Samples were placed into EPA approved sample containers provided by the laboratory and stored in cooler chests at 4°C for transport to ALS Laboratory Group, a Canadian Association for Laboratory Accreditation Inc. (CALA) certified laboratory for detailed analyses.

Implementation of one field duplicate sample per monthly monitoring event and laboratory quality control including; calibration verification standards, continuing calibration verification, certified reference material, matrix spikes, laboratory control samples, duplicates and method blanks, were also used to assure that the laboratory analyses of samples collected in the field were representative of conditions encountered in the investigation. The QA/QC program for the 2008 construction sampling included the following:

- Record keeping for all aspects of sample handling and analysis, including the description of methods/standards used to analyse samples, proper records of sampling and sample handling (chain of custody), analytical result records, and QC sample records.
- Field QC duplicated samples and laboratory QC including calibration verification standards, continuing calibration verification, certified reference material, matrix spikes, laboratory control samples, duplicates and method blanks.

2.4 FLOW CALCULATIONS

Estimates of the flow in the Red River, Floodway Channel, and agricultural drains that flow into the Channel are helpful for interpreting and comparing construction test results. Additionally, flow estimates are necessary to calculate approximate mass balances for the chemical analysis results to interpret the results in particular during event-based compliance monitoring.

The estimate of flow in the Red River was based on information provided in Manitoba Water Stewardship's weekly flow reports for the Red River near Selkirk (Appendix B) ⁽⁶⁾. Estimates of the flow in the Floodway Channel and in each of the agricultural drains that flow into the channel

were based on the recorded water levels at each location. As noted in Section 2.3, water levels were recorded using staff gauges installed at each of the sampling locations. The flow was then estimated using a relationship between flow and water level (rating curve), which was developed by KGS Group at each location. The rating curves developed for the agricultural drain drop structures were based on the physical characteristics of the drop structure and approach channel. Rating curves developed for the in-channel locations were based on the physical characteristics of the Floodway channel.

3.0 RESULTS

3.1 HYDROLOGICAL CONDITIONS

Monthly Monitoring

The monthly monitoring events were generally conducted following a substantial precipitation event during the month or near the end of the month if a substantial precipitation event had not yet occurred. Full details of the hydrological conditions for each monthly monitoring are provided in each of the monthly monitoring reports, NM7.1 – January to NM7.12 – December. Details of precipitation recorded by Environment Canada at the Winnipeg International Airport, Manitoba ⁽⁷⁾ are provided in the Daily Data Report for January to December, 2008 in Appendix C. The precipitation levels during each of the monthly monitoring events and the percentage of the monthly precipitation total are summarized in the following table;

Sample Date	Amount of Precipitation (mm) for the Monitoring Event	Percent of Monthly Total	Monthly Total Precipitation (mm)	Historical Average Monthly Total Precipitation (mm) ⁽⁸⁾
January 30 & 31	1.0	20%	5.0	19.7
February 25 & 26	1.0	8%	12.0	14.9
March 11 & 12	0.0	0%	30.0	21.5
April 25	7.5	83%	9.0	31.9
May 13	20.0	49%	40.5	58.8
June 6	38.5	37%	104.0	89.5
July 11	10.5	20%	53.0	70.6
August 12	30.5	32%	96.5	75.1
September 2	29.0	38%	77.0	52.3
October 7	13.0	26%	49.2	36.0
November 7	25.5	57%	44.5	25.0
December 18 & 19	3.5	18%	21.0	18.5
Annual Total		541.7	513.7	

Summary of Precipitation Levels During the 2008 Monthly Monitoring

As evident by the table above, while 2008 had a relatively average overall amount of precipitation with an annual total precipitation of 541.7 mm compared to the historical average of 513.7 the conditions varied from month to month. January, April, May and July all had total

monthly precipitation amounts substantially lower than the historical average monthly precipitation. In comparison, March, June, August, September and November had substantially higher monthly precipitation amounts compared to the historical average monthly precipitations.

Event-Based Monitoring

The level I event-based monitoring events were conducted between May and November, 2008 following precipitation events of 10 mm or greater. The amount and duration of each precipitation event and the year storm categorization (based on the Atmospheric Environment Service, Rainfall Intensity – Duration Frequency (Rainfall IDF) Values for the Winnipeg International Airport ⁽⁹⁾) which triggered each of the level I event-based monitoring events are summarized in the following table;

Sample Date	Amount of Precipitation (mm) for the Monitoring Event ¹	Approximate Duration (hours)	Year Storm ⁽⁹⁾
May 13	20.0 - 24.0	11	<2
May 26	7.0 - 11.0	11	<2
June 6	23.9 - 53.0	9	<2 - <5
June 9	12.2 – 26.0	18.5	<2
June 12	11.5 – 17.0	6.5	<2
June 28	14.0 - 24.0	10.5	<2
July 11	3.8 - 21.0	3	<2
July 29	5.3 - 20.3	1.5	<2
August 12	17.5 - 80.0	28.0	<2 - <5
August 22	0.5 - 26.4	9	<2
September 2	14.6 – 29.0	4.5	<2
September 23	8.7 - 33.8	16.5	<2
October 7	8.0 - 19.0	12.5	<2
October 13	19.1 – 33.0	12	<2
November 7	11.4 – 52.3	48	<2

Summary of Precipitation Levels During the 2008 Event-Based Monitoring

1 - Amount of precipitation measured varied between the different weather stations.

3.2 WATER QUALITY

The field chemistry and turbidity measured in the surface water at each location during the monthly and event-based monitoring events are listed in Table NM7–1. The general water quality results for all of the analyzed parameters collected at each location during the monthly and event-based monitoring events are summarized in Table NM7–2. The petroleum hydrocarbons and bacteria results for samples collected during the monthly monitoring and the herbicides collected during the April monthly (spring melt run-off) are summarized in Table NM7–3, Table NM7–4 and Table NM7–5 respectively. Existing CCME Surface Water Quality Guideline values are given for any parameters that have established objectives.

Construction monitoring data for the key water quality parameters of interest, identified and discussed in the baseline surface water monitoring report, were compared to the baseline data under non-flood/unfrozen and non-flood/frozen conditions. These parameters included total suspended solids, nutrients (total phosphorus, ammonia, nitrate plus nitrite and potassium), specific conductance, major ions (sodium and chloride), and *E.Coli* for bacterial concerns (Figures NM7-3 to NM7-25).

During the May to October 2008 construction monitoring there was no Red River water entering the Floodway Channel therefore these monthly monitoring events represent the non-flood/unfrozen condition. As a result the range of baseline conditions for comparison shown on the figures for the Channel are represented by the minimum and maximum concentrations observed during the summer baseline monitoring when there was no Red River water diverted. This included data from the May 10, June 13 and August 19, 2005 baseline monthly events. For the upstream end of the Floodway Channel where there was insufficient baseline data to provide a range of baseline conditions, the range was extrapolated using the data immediately downstream and following the observed trends. The Floodway Channel summer baseline conditions are representative of surface water run-off from precipitation events and therefore are comparable to the non-flood/unfrozen condition. The baseline conditions used for comparison for the drains flowing into the Floodway Channel and for the Red River at the Outlet are from the corresponding sample events as above. In addition, for the Red River at the Outlet the baseline conditions from the emergency summer operation and the July monthly event are used for

comparison because these dates represent the range of Red River flow conditions that could occur in any given year during construction.

During the January to March, November and December 2008 construction monitoring there was no Red River water entering the Floodway Channel therefore these monthly monitoring events represent the non-flood/frozen condition. The Floodway Channel summer baseline conditions as discussed above are representative of surface water run-off from precipitation events and therefore for some parameters are not comparable to the frozen conditions. Under frozen conditions the surface water is primarily from groundwater discharge into the Channel, referred to as baseflow. As a result in addition to the summer baseline conditions, for applicable parameters, the monthly monitoring values during the non-flood/frozen condition are also compared to the winter baseline results from the baseflow monitoring conducted at the Floodway Channel weir locations in March 2005 ⁽⁴⁾.

3.2.1 Total Suspended Solids

Monthly Monitoring

The comparison of TSS concentrations between baseline conditions and from samples collected for the Red River, Floodway Channel and drain sample locations during the monthly construction monitoring events for the non-flood/unfrozen and non-flood/frozen conditions are shown on Figures NM7–3 and NM7–4, respectively.

The TSS concentrations measured in the Floodway Channel were generally within or lower than the baseline concentrations during the monthly monitoring representing the non-flood/unfrozen condition, except during June and September (Figure NM7-3). A few additional TSS concentrations elevated above the baseline concentrations included the samples collected in the Floodway Channel downstream of North Bibeau Drain during April (250 mg/L) and May (260 mg/L) and at the PTH #44 weir location during August (130 mg/L). The elevated TSS concentrations measured during April and May also exceeded the CCME criteria of an allowable increase of 25 mg/L compared to background concentrations. With the exception of the elevated TSS concentrations measured during June and September, the concentrations in the Floodway Channel at the Outlet were lower than the background concentrations in the Red River upstream of the Outlet and generally resulted in dilution further downstream in the Red River.

The TSS concentrations measured in June were elevated above the baseline concentrations at several locations (Figure NM7-3). In particular, the concentrations from the Keewatin weir to downstream of construction (1700 mg/L; Station 50+500) exceeded the CCME criteria of an allowable increase of 25 mg/L compared to background concentrations. These elevated TSS concentrations were a result of areas of open soil around the Outlet structure, C8a, C8b, C7a, Ashfield Drain and Skolny Drain in combination with the heavy rain that was only slightly less than a 5 year rain event. The vegetation buffers, silt fences, surface contouring and winter mulch were in place, however, seeding had not yet occurred to vegetate the open soil and with the high level of precipitation the elevated TSS occurred although all measures were taken. The mass balance calculations indicate that an approximate increase in the TSS concentration of 22 mg/L would result in the Red River from the Floodway Channel inputs (Table NM7-6), indicating that these values are within CCME criteria. TSS measurements in the Red River upstream and downstream of the Outlet during June ranged from 49 to 79 mg/L indicative of the natural variation in the Red River.

The TSS concentrations measured in the Floodway Channel in September as noted were also elevated above the range of summer baseline concentrations at a few locations, in particular at the location downstream of construction (Station 50+500; 300 mg/L; Figure NM7-3). This elevated TSS concentration was likely a result of the unprotected upper slope of the diversion channel at the Outlet structure in combination with the heavy rain that was close to a 2-year rain event. The vegetation buffers, silt fences, surface contouring and rock riprap protection on the lower slope of the diversion channel were in place, however, geotextile had not yet been placed to cover the open soil on the upper slope and with the high level of precipitation the elevated TSS occurred although several measures were taken. Installation of the geotextile on the upper slope of the diversion channel was completed after this rain event. The TSS concentration in the Red River immediately downstream of the Outlet (S-30; 140 mg/L) was elevated compared to the background concentration upstream of the Outlet (63 mg/L), however, this was within baseline concentrations measured in the Red River and the concentrations further downstream were similar to background ranging from 62 to 68 mg/L. Although the laboratory results indicate an increase of 77 mg/L, the mass balance calculations with the measured TSS concentrations and flows indicate that only an approximate increase in TSS concentration of 0.7 mg/L would result in the Red River from the Floodway Channel inputs, indicating that these values are within CCME criteria.

The TSS concentrations were not compared to winter baseline concentrations as there are none available, however, the concentrations measured in the Floodway Channel were generally within or below the summer baseline concentrations during the monthly monitoring representing the non-flood/frozen condition, with a few exceptions (Figure NM7-6). The TSS concentrations measured at the location downstream of Grande Pointe Drain (290 mg/L) during January, downstream of North Bibeau Drain during March (120 mg/L) and November (170 mg/L) and at the Dunning weir location during February (97 mg/L) were elevated above the range of summer baseline concentrations. The elevated TSS concentration in January was likely a result of disturbing the channel bottom while drilling through the ice cover to collect the sample and not due to construction activities within the Floodway Channel. The TSS concentration measured during November in the Floodway Channel downstream of construction (36 mg/L; Stn 50+900) was higher than the concentration upstream of construction (<5 mg/L; Stn 11+000), which exceeds the CCME criteria of an allowable increase of 25 mg/L, however this elevated TSS concentration and all other locations, except downstream of the North Bibeau Drain, were within the overall range of summer baseline concentrations in the Floodway Channel. Regardless of these few TSS concentrations elevated above baseline along the Floodway Channel the concentration measured during each month at the Outlet was lower compared to the background concentration in the Red River upstream of the Outlet and would result in dilution if anything. During December minor increases in TSS concentrations were measured in the Red River downstream of the Outlet (up to 700 mg/L) compared to upstream of the Outlet (670 mg/L). This TSS concentration increase of 4.5% is within the allowable CCME criteria of a 10% increase and likely due to the natural variation in the Red River in response to flow conditions and not due to construction activities within the Floodway Channel because all TSS concentrations in the Floodway Channel were significantly lower than Red River concentrations.

The TSS concentrations measured in the Red River at the Floodway Outlet during 2008 were compared to the 10th to 90th percentile range of monthly historical data collected once a month by Manitoba Water Stewardship from the Red River at Selkirk for the period of record available from 1970 to 2003. The TSS concentrations measured each month during 2008, except for November, December and some measurements during July and September were within the 10th to 90th percentile ranges (Figure NM7-5). During July only the background TSS concentration in the Red River upstream of the Outlet (300 mg/L) and 500 m downstream (260 mg/L) were higher than the historical July 90th percentile (277 mg/L). These elevated TSS concentrations

are likely a result of natural variation in the river and not related to construction, as all of the TSS concentrations in the Red River downstream of the Outlet were below the background TSS concentration. During September the TSS concentration in the Red River 500 m downstream of the Outlet (140 mg/L) was higher than the historical September 90th percentile (90 mg/L). This elevated TSS concentrations in the Red River may be associated with the higher than normal average monthly precipitation and in particular the 2-year storm event as discussed above. All of the TSS concentrations measured in the Red River during November (190 to 210 mg/L) and December (110 to 700 mg/L) were higher than the historical 90th percentile for November (76 mg/L) and December (23 mg/L) including the background concentrations upstream of the Outlet. These elevated TSS concentrations are likely in response to the higher than normal flows in the Red River during November and December (Appendix B). They are not a result of construction. As discussed above the concentrations in the Floodway Channel were substantially lower compared to the Red River and would have resulted in dilution if anything.

The TSS concentrations measured in the Manness and Domain Drains along the West Dyke ranged from <5 to 120 mg/L and 14 to 63 mg/L, respectively, during the monthly monitoring in which samples could be collected (Table NM7-2). These concentrations were within the baseline range of concentrations measured in the Manness and Domain Drains (11 to 300 mg/L and <5 to 100 mg/L, respectively) during the previous sampling conducted prior to the start of construction.

Event-Based Monitoring

Results of the 15 level I event-based monitoring events conducted between May and November have typically indicated very small changes in TSS concentration in the Red River during the 2008 construction year, except for the June 6 monitoring (Table NM7-6). The June 6 rainfall with approximately 24 to 53 mm of rain in 9 hours was ranged from less than a 2-year storm to close to a 5-year storm; based on the Atmospheric Environment Service, Rainfall Intensity – Duration Frequency (Rainfall IDF) Values for the Winnipeg International Airport ⁽⁹⁾. The mass balance calculations indicated that an estimated increase in the TSS concentration of 11.06 mg/L or 21.1% would result in the Red River from the Floodway Channel inputs. Likewise the mass balance using the flows provided by MWS and the laboratory TSS concentrations indicated an approximate increase in the TSS concentrations of 22.0 mg/L or 40.1% (Table NM7-6). These increases in TSS concentrations are within the CCME criteria of an allowable increase of 25

mg/L based on the background concentrations being <250 mg/L (clear flow). Nearly all the other level I event based monitoring measured a change of less than 1.0% and over half of these were a decrease in TSS concentration. The level I event-based worksheet and the follow-up lab results fax for each rain event are provided with the monthly monitoring reports, NM7.1 – January to NM7.12 – December.

A review of the estimated and actual change in Red River sediment concentration measured during the level I event-based monitoring is provided in Table NM7-6. This review indicates that the values estimated using the mass balancing based on field measurements of turbidity and water flows, and the site-specific relationships between TSS and field turbidity are comparable to the actual increases calculated from laboratory TSS analysis and reported flows. The review also clearly demonstrates that a TSS increase exceeding the CCME criteria of an allowable 10% or 25 mg/L is very unlikely for precipitation events less than 10 mm.

The field turbidity and laboratory TSS concentrations measured during the baseline and sixteen day Outlet TSS Monitoring Program are summarized in Table NM7-7. High TSS concentrations were measured at in the Red River upstream of Outlet on March 17, 2008 at 10:30 AM (85 mg/L) and 1:30 PM (45 mg/L). These concentrations were not considered a concern, however, because all three downstream locations were much lower ranging from 17 to 20 mg/L at 10:30 AM and 8 to 18 mg/L at 1:30 PM. The high TSS concentrations in the Red River upstream of the Outlet on March 17, 2008 are considered to be an anomaly and are not a concern as these represent background conditions. The results of the field turbidity measurements and laboratory TSS values indicate that the removal of the cofferdam from Contract CE1 at the Outlet Structure did not elevate TSS levels in the Red River above the CCME Freshwater Aquatic Life criteria.

3.2.2 Specific Conductance

The comparison of specific conductance values between baseline conditions and from samples collected for the Red River, Floodway Channel and drain sample locations during the monthly construction monitoring events for the non-flood/unfrozen and non-flood/frozen conditions are shown on Figures NM7–6 and NM7–7, respectively.

Specific conductance measured in the Floodway Channel during the monthly monitoring representing the non-flood/unfrozen condition was generally within the range of summer baseline, except a few elevated concentrations during April (Figure NM7–6). During April specific conductance values measured in the Floodway Channel, at the Keewatin and Spring Hill Weir locations, were elevated above the range of summer baseline concentrations. These elevated specific conductance values during April were not a concern as the specific conductance in the Floodway Channel at the Outlet (462 μ S/cm) was lower compared to the values in the Red River (529 to 661 μ S/cm), which would have resulted in dilution if anything. During the monthly monitoring representing the non-flood/unfrozen condition there were negligible specific conductance increases in the Red River downstream of the Outlet compared to the background values upstream of the Outlet and the values were all within the baseline range.

The specific conductance measured in the Floodway Channel downstream of construction and at most of the other Floodway locations were generally within or below the range of winter baseline values (1150 to 1730 μ S/cm) during the monthly monitoring representing the nonflood/frozen condition (Figure NM7–7). One exception was the high value measured in the Floodway Channel downstream of the Grande Pointe Drain (2840 mg/L) during the January monitoring. The specific conductance values in the Floodway Channel at the Outlet were typically slightly higher compared to those in the Red River at the Outlet. Regardless, there were negligible specific conductance increases in the Red River downstream of the Outlet compared to the background values upstream of the Outlet, except for slight increases measured during the December monthly monitoring. The slight increases in specific conductance values measured in the Red River at the Outlet were not related to construction because the values measured in the Floodway Channel were within the normal baseline range.

The specific conductance measured in the Manness and Domain Drains along the West Dyke ranged from 386 to 1040 μ S/cm and 193 to 1670 μ S/cm, respectively, during the monthly monitoring in which samples could be collected (Table NM7-2). The values measured in the Manness Drain were within the baseline range (177 to 1680 μ S/cm). Likewise, the values measured in the Domain Drain were within the baseline range (108 to 503 μ S/cm), except for the elevated specific conductance measured during the June (1679 μ S/cm) monthly monitoring. This elevated specific conductance was not a result of construction because the activities in the

vicinity of the Domain Drain prior to June consisted of rip rap application that was completed in March 2008.

3.2.3 Total Phosphorus

Monthly Monitoring

The comparison of total phosphorus concentrations between baseline conditions and from samples collected for the Red River, Floodway Channel and drain sample locations during the monthly construction monitoring events for the non-flood/unfrozen and non-flood/frozen conditions are shown on Figures NM7–8 and NM7–9, respectively.

The total phosphorus concentrations measured in the Floodway Channel during the monthly monitoring representing the non-flood/unfrozen condition was generally lower or within the range of summer baseline, except a couple elevated concentrations during June (Figure NM7–8). During June total phosphorus concentrations measured in the Floodway Channel, at the PTH #44 Weir (0.557 mg/L) and downstream of construction (0.735 mg/L; Station 50+500) locations, were elevated above the range of summer baseline concentrations. These elevated concentrations within the Floodway Channel near the Outlet did not increase concentrations in the Red River downstream of the Outlet compared to the background concentrations upstream of the Outlet. Additionally, during all other months the total phosphorus concentrations in the Red River and resulted negligible changes or dilution. One exception was a measured increase 500 m downstream of the Outlet. These elevated total phosphorus concentrations measured in the Floodway Channel at the Outlet and in the Red River 500 m downstream of the Outlet. These elevated total phosphorus concentrations measured in the Floodway Channel at the Outlet and in the Red River 500 m downstream of the Outlet.

The total phosphorus concentrations measured in the Floodway Channel were within or lower than the baseline concentrations during the monthly monitoring representing the non-flood/frozen condition (Figure NM7–9). The total phosphorus concentrations in the Red River downstream of the Outlet ranged from slightly lower to higher compared to the background concentrations upstream of the Outlet during the monthly monitoring representing the non-flood/frozen condition. The elevated concentrations in the Red River were not likely due to

construction activities within the Floodway Channel because the total phosphorus concentrations measured in the Floodway Channel were much lower compared to the Red River concentrations. Likewise, concentrations in the Red River were typically within the range of baseline concentrations except for the elevated concentrations in December that reflected the trends observed for TSS concentrations.

The total phosphorus concentrations measured in the Red River at the Floodway Outlet during 2008 were compared to the 10th to 90th percentile range of monthly historical data collected once a month by Manitoba Water Stewardship from the Red River at Selkirk for the period of record available from 1970 to 2003. The total phosphorus concentrations measured each month during 2008, except for most of the December sample locations and some sample locations in July, October and November, were within the 10th to 90th percentile ranges (Figure NM7-10). During December the total phosphorus concentration in the Red River upstream of the Outlet (0.892 mg/L) and downstream of the Outlet (0.482 to 0.952 mg/L), were higher than the historical December 90th percentile (0.45 mg/L), except for the location 3000 m downstream of the Outlet (0.376 mg/L). These elevated total phosphorus concentrations measured downstream of the Outlet during may be associated with the elevated TSS concentrations measured downstream of the Outlet during the December monitoring as previously discussed.

The total phosphorus concentrations measured in the Manness and Domain Drains along the West Dyke ranged from 0.238 to 0.723 mg/L and 0.142 to 0.713 mg/L, respectively, during the monthly monitoring in which samples could be collected (Table NM7-2). The values measured in the Manness Drain were generally lower than the baseline range (0.329 to 0.710 mg/L), except for the slightly elevated concentration measured during the November (0.723 mg/L) monthly monitoring. This elevated total phosphorus above baseline may be associated with the higher TSS concentration measured during November and not a result of construction as there were no activities, such as seeding, conducted to date in the vicinity of the Manness Drain. In, comparison the total phosphorus concentrations measured in the Domain Drain were either lower than or within the baseline range (0.238 to 0.723 mg/L).

Event-Based Monitoring

Total phosphorus was analyzed during 12 of the 15 event-based monitoring events conducted, beginning on June 6 following the first application of fertilizer. The total phosphorus

concentrations measured in the Floodway Channel downstream of active construction activities were lower than those in the Red River, except during the June 6 (0.735 mg/L; Table NM7-2) event-based monitoring. This elevated total phosphorus was an increase from the concentrations measured in the Floodway Channel upstream of construction (0.171 mg/L) and reflected the trend observed for TSS concentrations. Regardless of the elevated total phosphorus concentration in the Floodway Channel the concentration measured in the Red River downstream of the Outlet (0.201 mg/L) was lower than the background concentration upstream of the Outlet (0.233 mg/L). These results indicate that during 2008 total phosphorus was not a concern, as the concentrations in the Floodway Channel would typically have resulted in dilution in the Red River if anything. Additionally the total phosphorus concentrations measured in the Red River during the event based monitoring were lower than or within the historical 10th to 90th percentile ranges during the respective months, except for the October 7 monitoring that was only slightly higher than the 90th percentile.

3.2.4 Ammonia (NH₃)

The water quality guidelines for ammonia vary depending on the temperature and pH concentrations of the water. For the 2008 construction monitoring program, the pH ranged from 7.59 to 9.26, which except for the 6 values above 9.0, was within the CCME criteria for the protection of freshwater aquatic life (6.5 to 9.0; Table NM7-2). For the 2008 construction monitoring program the temperature ranged from 0°C to 24.8°C. The soluble ammonia (NH₃) values reported by the laboratory were converted by KGS Group into un-ionized ammonia values based on a pH temperature relationship (Table NM7-2). The un-ionized ammonia represents all the forms of ammonia in the water, with the exception of the ammonium ion (NH₄). The corresponding un-ionized ammonia CCME criteria for the protection of freshwater aquatic life is 0.019 mg/L.

Monthly Monitoring

The comparison of ammonia concentrations between baseline conditions and from samples collected for the Red River, Floodway Channel and drain sample locations during the monthly construction monitoring events for the non-flood/unfrozen and non-flood/frozen conditions are shown on Figures NM7–11 and NM7–12, respectively.

The ammonia concentrations measured in the Floodway Channel were typically similar to the range of baseline concentrations, during the monthly monitoring representing the non-flood/unfrozen condition (Figure NM7–11). Notable exceptions included the ammonia concentrations measured in the Floodway Channel location downstream of the North Bibeau Drain (0.280 mg/L) during the May monthly monitoring, at the Keewatin weir (0.372 mg/L) and the Springhill weir (0.263 mg/L) locations during the April monthly monitoring and at the Dunning Weir (0.235 mg/L) location during August. These measured concentrations were more than twice the upper summer baseline range. However, of these elevated ammonia concentrations in the Floodway Channel only the ammonia concentration (0.021 mg/L) that slightly exceeded the CCME criteria of 0.019 mg/L. This elevated concentration and exceedance of the CCME criteria during August may be in response to elevated ammonia concentrations.

During the non-flood/unfrozen condition the range of ammonia concentrations measured in the Red River at the Outlet varied (Figure NM7–11). Typically the ammonia concentrations measured in the Red River downstream of the Outlet were similar to or lower than the background concentrations in the Red River upstream of the Outlet, except during July and 3 km downstream of the Outlet during May. The ammonia concentrations measured in the Red River during June and October resulted in exceedances of the CCME un-ionized ammonia criteria both upstream and all locations downstream of the Outlet. Whereas during July and September there were only a couple of ammonia concentrations that resulted in exceedances and none during the April, May and August monthly monitoring. The increases in ammonia concentrations in the Red River downstream of the Outlet and the exceedances of the CCME un-ionized ammonia concentrations in the Red River downstream of the Outlet and the exceedances the ammonia concentrations in the Red River and attributed to construction activities because the ammonia concentrations in the Floodway Channel at the Outlet were typically lower than the concentrations in the Red River and would have resulted in dilution if anything.

The ammonia concentrations measured in the Floodway Channel were typically within or below the range of winter baseline concentrations, with a few exceptions, during the monthly monitoring representing the non-flood/frozen condition (Figure NM7–12). The ammonia concentrations measured in the Floodway Channel were elevated above the range of winter baseline downstream of the Grande Ponte Diversion (0.547 mg/L), at the Keewatin Weir (0.379

mg/L) and at the Spring Hill Weir (0.337 mg/L) during the January monthly monitoring and at the location downstream of construction during December (0.331 mg/L). These elevated concentrations were not attributed to construction, as there were no activities in January, or December, such as fertilizer application, that would contribute to the elevated concentration of ammonia. Additionally these concentrations above the baseline conditions did not result in an exceedance of the CCME un-ionized ammonia criteria. The ammonia concentrations in the Red River downstream of the Outlet were typically higher compared to the background concentration in the Red River upstream of the Outlet, except during March when they were lower. The ammonia concentrations (0.028 to 0.065 mg/L) that exceeded the CCME criteria (0.019 mg/L) both upstream and downstream of the Outlet. These elevated concentrations were not likely due to construction activities within the Floodway Channel because the ammonia concentrations measured in the Red River and at all other channel locations were substantially lower than in the Red River and would have resulted in dilution if anything.

The ammonia concentrations measured in the Red River at the Floodway Outlet during 2008 were compared to the 10th to 90th percentile range of monthly historical data collected once a month by Manitoba Water Stewardship from the Red River at Selkirk for the period of record available from 1970 to 2003. The ammonia concentrations measured each month during 2008 were generally within or lower than the 10th to 90th percentile ranges, except for some locations during June (Figure NM7-13). During June the ammonia concentrations in the Red River upstream of the Outlet (0.502 mg/L) and downstream of the Outlet (0.385 to 0.510 mg/L), were slightly higher than the historical December 90th percentile (0.378 mg/L). These elevated ammonia concentrations are not a result of construction as the concentrations in the Floodway Channel were substantially lower compared to the Red River and would have resulted in dilution if anything. Even though the ammonia concentrations were generally within the historical conditions in the Red River, as noted above the ammonia concentrations measured during March, June, July, September and October resulted in un-ionized ammonia concentrations that exceeded the CCME criteria. This suggests that exceedance of the CCME unionized ammonia criteria is a common occurrence in the Red River and not a result of construction activities.

The ammonia concentrations measured in the Manness and Domain Drains along the West Dyke ranged from 0.044 to 0.150 mg/L and 0.045 to 0.373 mg/L, respectively, during the

monthly monitoring in which samples could be collected (Table NM7-2). These concentrations were within the baseline range of concentrations measured in the Manness and Domain Drains (0.050 to 1.57 mg/L and 0.070 to 2.03 mg/L, respectively). Additionally, all of the measured ammonia concentrations resulted in un-ionized ammonia concentrations that do not exceed the CCME criteria.

Event-Based Monitoring

Ammonia was analyzed during 12 of the 15 event-based monitoring events conducted, beginning on June 6 following the first application of fertilizer. The ammonia concentrations measured in the Floodway Channel downstream of active construction activities were lower than those in the Red River, except during the August 12 (0.069 mg/L) event-based monitoring, which was only slightly higher than the concentration in the Red River (0.067 mg/L; Table NM7-2). As such the ammonia concentrations in the Red River downstream of the Outlet were lower compared to the background concentration upstream of the outlet with one except during the July 11 event based monitoring. Whereas the ammonia concentrations measured in the Red River upstream and downstream of the Outlet resulted in an exceedance of the CCME unionized ammonia criteria during 5 and 6 of the 12 event-based samples, respectively, none of the ammonia concentrations measured in the Floodway Channel downstream of construction resulted in an exceedance. These results indicate that during 2008 there were no potential construction effects associated with ammonia, as the concentrations in the Floodway Channel downstream of construction did not result in any exceedance of the CCME criteria and they would have resulted in dilution in the Red River if anything. Additionally the ammonia concentrations measured in the Red River during the event based monitoring were lower than or within the historical 10th to 90th percentile ranges during the respective months, except for the June 6 monitoring when the background concentration upstream of the Outlet was higher than the 90th percentile.

3.2.5 Nitrate + Nitrite-N

Monthly Monitoring

The comparison of nitrate + nitrite-N concentrations between baseline conditions and from samples collected for the Red River, Floodway Channel and drain sample locations during the

monthly construction monitoring events for the non-flood/unfrozen and non-flood/frozen conditions are shown on Figures NM7–14 and NM7–15.

The nitrate + nitrite-N concentrations measured in the Floodway Channel were typically within the lower range of the baseline concentrations during the monthly monitoring representing the non-flood/unfrozen condition, except two locations that exceeded the range of baseline concentrations (Figure NM7-14). The nitrate + nitrite-N concentrations were elevated above the baseline concentrations in the Floodway Channel at the location downstream of North Bibeau Drain (1.230 mg/L) during April and at the Dunning Weir (1.170 mg/L) location during August. However, the nitrate + nitrite-N concentrations during these two months were again within the range of summer baseline concentrations in the Floodway Channel at the Outlet and they were lower than concentrations in the Red River. During most of the months, except June and July, the nitrate + nitrite-N concentrations measured in the Floodway Channel at the Outlet was lower than the concentrations in the Red River. As such during most months there was typically negligible changes or slight decreases in concentration in the Red River downstream of the Outlet compared to the background concentrations upstream of the Outlet. During August a minor concentration increase in nitrate + nitrite-N was measured in the Red River downstream of the Outlet (0.830 to 1.05 mg/L) compared to the background concentration upstream of the Outlet (0.823 mg/L). Likewise during July a concentration increase was measured in the Red River 3 km downstream of the Outlet (0.402 mg/L) compared to the background concentration upstream of the Outlet (<0.005 mg/L). These concentration increases were not likely due to construction activities within the Floodway Channel because as noted the nitrate + nitrite-N concentrations within the Floodway were typically within summer baseline values and most were substantially lower than the Red River concentrations.

The nitrate + nitrite-N concentrations were not compared to winter baseline concentrations as there are none available, however, the concentrations measured in the Floodway Channel were typically within the lower range of summer baseline concentrations during the monthly monitoring representing the non-flood/frozen condition (Figure NM7–15). An exception was the nitrate + nitrite-N concentration measured during the December monitoring in the Floodway Channel downstream of construction (0.779 mg/L mg/L), which was higher compared to the baseline concentrations. This elevated concentration in the Floodway Channel was not attributed to construction as no fertilizers were applied in the construction area at this time and

all other nitrate + nitrite-N concentrations in the Floodway Channel were below summer baseline criteria. The nitrate + nitrite-N concentrations measured in the Floodway Channel Outlet each month were lower than the concentrations in the Red River and did not result in any notable concentration changes in the Red River downstream of the Outlet compared to background concentrations upstream of the Outlet.

The nitrate + nitrite-N concentrations measured in the Red River at the Floodway Outlet during 2008 were compared to the 10th to 90th percentile range of monthly historical data collected once a month by Manitoba Water Stewardship from the Red River at Selkirk for the period of record available from 1970 to 2003. The nitrate + nitrite-N concentrations measured during half of the 2008 monthly monitoring were within or below the 10th to 90th percentile ranges (Figure NM7-16). During the January, February, August, September, November and December monthly monitoring the nitrate + nitrite-N concentrations in the Red River both upstream and downstream of the Outlet were higher than their respective historical 90th percentiles. The elevated nitrate + nitrite-N concentrations above historical concentrations are not a result of construction however, as the concentrations downstream of the Outlet were very similar or lower compared to the background concentrations upstream of the Outlet, except during August. The slight concentration increases measured in August downstream of the Outlet (0.830 to 1.05 mg/L) compared to the background concentration upstream of the Outlet (0.823 mg/L) were not likely due to construction activities within the Floodway Channel because the nitrate + nitrite-N concentrations within the Floodway were substantially lower than the Red River concentrations.

The nitrate + nitrite-N concentrations measured in the Manness and Domain Drains along the West Dyke ranged from 0.044 to 1.09 mg/L and 0.052 to 1.46 mg/L, respectively, during the monthly monitoring in which samples could be collected (Table NM7-2). These concentrations were within the baseline range of concentrations measured in the Manness and Domain Drains (0.040 to 4.65 mg/L and 0.010 to 3.91 mg/L, respectively).

Event-Based Monitoring

Nitrate + nitrite-N was analyzed during 12 of the 15 event-based monitoring events conducted, beginning on June 6 following the first application of fertilizer. The nitrate + nitrite-N concentrations measured in the Floodway Channel downstream of active construction activities

were lower than those in the Red River during 7 of these 12 monitoring events. As such concentrations measured in the Red River downstream of the Outlet were typically similar to or lower than the background concentrations upstream of the Outlet, with two exceptions. During the June 6 and June 12 monitoring events the concentrations downstream of the Outlet increased to 0.124 mg/L and 2.310 mg/L, respectively from the background concentrations upstream of the Outlet (0.105 mg/L and 1.020 mg/L, respectively; Table NM7-2). The measured increase downstream of the Outlet during the June 6 monitoring was not a result of construction because the nitrate + nitrite-N concentration measured in the Floodway Channel upstream of construction (0.264 mg/L) representing background conditions was higher than the concentration downstream of active construction activities (0.230 mg/L). In comparison, construction activities may have contributed to the measured increase downstream of the Outlet during the June 12 monitoring because the nitrate + nitrite-N concentration measured in the Floodway Channel downstream of active construction activities (2.80 mg/L) was higher than the background concentration upstream of construction (0.031 mg/L). This increased nitrate + nitrite-N concentration measured in the Red River downstream of the outlet (2.310 mg/L) during the June 12 monitoring is not a concern because higher concentrations up to 3.81 mg/L have been previously measured in the Red River upstream of the Outlet.

3.2.6 Potassium

The comparison of potassium concentrations between baseline conditions and from samples collected for the Red River, Floodway Channel and drain sample locations during the monthly construction monitoring events for the non-flood/unfrozen and non-flood/frozen conditions are shown on Figures NM7–17 to NM7–18.

The potassium concentrations measured in the Floodway Channel during the monthly monitoring representing the non-flood/unfrozen condition were generally lower or within the range of summer baseline, except a few elevated concentrations during April and October (Figure NM7–17). During April the concentrations measured in the Floodway Channel at the Keewatin weir (10.1 mg/L) and Spring Hill weir (6.46 mg/L) locations were higher than the summer baseline range. Likewise, during October the concentrations measured at the Keewatin weir (9.06 mg/L), Dunning weir (9.23 mg/L) and the PTH #44 weir (9.39 mg/L) locations and downstream of construction (9.25 mg/L; Stn 50+900) were higher than the summer baseline

range. Regardless of these few elevated potassium concentrations in the Floodway Channel, the concentrations at the Outlet during each month were lower than the concentrations in the Red River upstream of Outlet and would have resulted in dilution if anything. As such, the concentrations measured in the Red River downstream of the Outlet were similar to or lower than the background concentrations upstream of the Outlet during each month except May. Slight increases in potassium concentrations were measured in the Red River downstream of the Outlet (5.94 to 6.72 mg/L) during May compared to the concentration upstream of the Outlet (5.88 mg/L). This increase is not a result of construction because the concentration in the Floodway Channel at the Outlet was lower than the concentration in the Red River. Additionally, all the concentrations measured in the Red River during each month were within the range of summer baseline concentrations.

The potassium concentrations were not compared to winter baseline concentrations as there are none available, however, the concentrations measured in the Floodway Channel were typically within the range of summer baseline concentrations during the monthly monitoring representing the non-flood/frozen condition (Figure NM7-18). A few exceptions included the potassium concentrations measured in the Floodway Channel downstream of the Grande Pointe drain during January (17.4 mg/L) and December (11.3 mg/L). These elevated concentrations were not attributed to construction, as there were no activities in January and December, such as fertilizer application, that would contribute to the elevated concentration of potassium and potassium is not a component of the fertilizer that was used during 2008. Additionally, the elevated potassium concentration in the Floodway Channel has no basis for evaluation, as there is no applicable CCME criterion. The potassium concentrations in the Red River downstream of the Outlet where were slightly higher during the January, February and December monitoring compared to the background concentrations in the Red River upstream of the Outlet. However, these slight increases were not a concern because the concentrations were within baseline concentrations. Additionally, they were not a result of construction because the concentrations in the Floodway at the Outlet during each month were lower than in the Red River, and would have resulted in dilution if anything.

The potassium concentrations measured in the Red River at the Floodway Outlet during 2008 were compared to the 10th to 90th percentile range of monthly historical data collected once a month by Manitoba Water Stewardship from the Red River at Selkirk for the period of record

available from 1970 to 2003. The potassium concentrations measured upstream and downstream of the Outlet during February and upstream and 500 m downstream of the Outlet during October were higher than the 90th percentile, whereas all other months during 2008 were within or lower than the 10th to 90th percentile ranges (Figure NM7-19). The elevated potassium concentrations above than the 90th percentile in October were representative of background conditions as the concentrations measured downstream of the Outlet were lower compared to upstream. The range of potassium concentrations in the Red River downstream of the Outlet (9.65 to 10.3 mg/L) during February were slightly lower to higher compared to the background concentration upstream of the Outlet (9.86 mg/L). The elevated potassium concentrations were not likely due to construction activities within the Floodway Channel because the potassium concentrations and would have resulted in dilution if anything.

The potassium concentrations measured in the Manness and Domain Drains along the West Dyke ranged from 7.97 to 13.2 mg/L and 8.12 to 14.3 mg/L, respectively, during the monthly monitoring in which samples could be collected (Table NM7-2). These concentrations were within the baseline range of concentrations measured in the Manness and Domain Drains (8.4 to 17.8 mg/L and 7.99 to 18.9 mg/L, respectively).

3.2.7 Sodium

The comparison of sodium concentrations between baseline conditions and from samples collected for the Red River, Floodway Channel and drain sample locations during the monthly construction monitoring events for the non-flood/unfrozen and non-flood/frozen conditions are shown on Figures NM7–20 and NM7–21.

The sodium concentrations measured in the Floodway Channel during the monthly monitoring representing the non-flood/unfrozen condition were generally within the range of summer baseline, except a few elevated concentrations during April and May (Figure NM7–20). During April the concentrations measured in the Floodway Channel at the Keewatin weir (150 mg/L) and Spring Hill weir (128 mg/L) locations were higher than the summer baseline range. Likewise, during May the concentrations measured in the Floodway Channel at the Keewatin weir (77.1 mg/L) were higher than the summer baseline range. Regardless of these few

elevated sodium concentrations in the Floodway Channel, the concentrations at the Outlet during each month, except for September, were lower than the concentrations in the Red River upstream of Outlet and would have resulted in dilution if anything. As such, the concentrations measured in the Red River downstream of the Outlet were similar to or lower than the background concentrations upstream of the Outlet during each month.

The sodium concentrations measured in the Floodway Channel downstream of construction and at the other Floodway locations were all within or below the range of winter baseline values (70.5 to 165 mg/L) during the monthly monitoring representing the non-flood/frozen condition (Figure NM7–21). The sodium concentrations in the Floodway Channel at the Outlet were generally higher than the concentrations in the Red River at the Outlet except during February. These higher concentrations in the Floodway Channel did not result in any notable changes in the sodium concentrations in the Red River downstream of the Outlet compared to background concentrations upstream of the Outlet.

The sodium concentrations measured in the Manness and Domain Drains along the West Dyke ranged from 15.5 to 46.9 mg/L and 5.35 to 73.6 mg/L, respectively, during the monthly monitoring in which samples could be collected (Table NM7-2). The concentrations measured in the Manness Drain were within the baseline range (4.79 to 76.0 mg/L). In comparison, only the concentrations measured in the Domain Drain during April (5.35 mg/L) and November (10.3 mg/L) were within the baseline range (2.36 to 18.2 mg/L). The sodium concentrations measured during the May (32.7 mg/L) and June (73.6 mg/L) monthly monitoring were elevated above the baseline range. Similar to what was already noted for specific conductance the elevated sodium concentrations were not a result of construction because the activities in the vicinity of the Domain Drain prior to May and June consisted of riprap application that was completed in March 2008.

3.2.8 Chloride

The comparison of chloride concentrations between baseline conditions and from samples collected for the Red River, Floodway Channel and drain sample locations during the monthly construction monitoring events for the non-flood/unfrozen and non-flood/frozen conditions are shown on Figures NM7–22 and NM7–23.

The chloride concentrations measured in the Floodway Channel during the monthly monitoring representing the non-flood/unfrozen condition were generally within the range of summer baseline, except a few elevated concentrations during April and May (Figure NM7-22). During April the concentrations measured in the Floodway Channel at the Keewatin weir (252 mg/L) and Spring Hill weir (215 mg/L) locations were higher than the summer baseline range. Likewise, during May the concentrations measured in the Floodway Channel at the Keewatin weir (122 mg/L) were higher than the summer baseline range. Regardless of these few elevated sodium concentrations further downstream in the Floodway Channel and at the Outlet the concentrations returned to within the summer baseline range. The chloride concentrations measured in the Floodway Channel at the Outlet during May, July, September and October, were higher than the concentrations in the Red River upstream of Outlet. However, these higher concentrations did not result in any notable changes in chloride concentrations in the Red River downstream of the Outlet compared to the background concentrations upstream of the Outlet, except for during July. A slight increase in chloride concentrations was measured during July in the Red River downstream of the Outlet (30 to 33 mg/L) compared to upstream of the Outlet (29 mg/L). These elevated concentrations at the downstream end of the Floodway Channel and in the Red River during July are likely in response to elevated concentrations flowing into the Floodway Channel from the Kildare Trunk-Transcona Storm Sewer (721 mg/L) and the Cooks Creek Diversion (295 mg/L) and not related to construction activities.

The chloride concentrations measured in the Floodway Channel downstream of construction and at the other Floodway locations were all within or below the range of winter baseline values (60 to 205 mg/L) during the monthly monitoring representing the non-flood/frozen condition (Figure NM7–23). The chloride concentrations in the Floodway Channel at the Outlet were generally higher than the concentrations in the Red River at the Outlet except during February. These higher concentrations in the Floodway Channel generally did not result in any notable changes in the chloride concentrations in the Red River downstream of the Outlet compared to background concentrations upstream of the Outlet, except during December. The chloride concentration measured in the Floodway Channel Outlet (61 mg/L; Stn 50+900) during December was higher than the concentration in the Red River upstream of the Outlet (53 mg/L) and may have contributed to the elevated concentration of 78 mg/L located 500 m downstream of the Outlet. This elevated concentration in the Red River is not a concern, however, as there is

no applicable criteria and all other Red River concentrations further downstream of the Outlet (53 to 56 mg/L) were similar to the background concentration.

The chloride concentrations measured in the Manness and Domain Drains along the West Dyke ranged from 59 to 188 mg/L and 12 to 80 mg/L, respectively, during the monthly monitoring in which samples could be collected (Table NM7-2). The concentrations measured in the Manness Drain were within the baseline range (15 to 380 mg/L). Likewise, the concentrations measured in the Domain Drain were within the baseline range (10 to 71 mg/L), except for the elevated chloride concentration measured during the June (80 mg/L) monthly monitoring. As previously noted for specific conductance and sodium, this elevated chloride concentration was not a result of construction because the activities in the vicinity of the Domain Drain prior to June consisted of riprap application that was completed in March 2008.

3.2.9 Iron

During the 2008 construction monitoring there were several occurrences of iron concentrations above the CCME criteria for the protection of freshwater aquatic life (0.30 mg/L; Table NM7–2), similar to what was observed during the baseline and 2005, 2006 and 2007 construction monitoring. As discussed in the baseline monitoring report the iron concentrations are likely influenced, in part, by the presence of high levels of suspended sediment in the samples, which contributes to the iron when the samples are acidified for analysis.

The iron concentrations measured in the Floodway Channel varied monthly during the monitoring representing the non-flood/unfrozen condition (Table NM7–2). During April and June the iron concentrations measured at all locations in the Floodway Channel were above the CCME criteria, whereas during May only the concentration downstream of the North Bibeau Drain exceeded the CCME criteria. The elevated iron concentrations in the Floodway Channel generally ranged from 0.31 mg/L to 0.72 mg/L, which are reflective of similar exceedances (0.31 to 0.81 mg/L) measured in the Floodway Channel during the baseline monitoring. The iron concentrations measured in the Red River at all of the locations at the Outlet (0.31 to 1.49 mg/L) exceeded the CCME criteria during April, July, September and October and at a one or two of the locations the rest of the months during the non-flood/unfrozen condition. Again, these

elevated iron concentrations do not differ from elevated iron concentrations (0.31 to 1.56 mg/L) measured in the Red River during the baseline monitoring.

The iron concentrations measured in the Floodway Channel were generally below the CCME criteria during the monthly monitoring representing the non-flood/frozen condition (Table NM7–2). However, elevated iron concentrations above the CCME criteria were typically measured at a couple of locations in the Floodway Channel during each month (0.37 to 0.68 mg/L). There were no elevated iron concentrations above the CCME criteria measured in the Red River at the Outlet during January to March, however elevated concentrations (0.63 to 1.96 mg/L) were measured during November and December. These elevated iron concentrations again are reflective of similar exceedances measured in the Floodway Channel (0.31 to 0.81 mg/L) and in the Red River (0.31 to 1.56 mg/L) during the baseline monitoring.

The iron concentrations measured in the Manness and Domain Drains along the West Dyke ranged from 0.18 to 0.45 mg/L and 0.36 to 0.49 mg/L, respectively, during the monthly monitoring in which samples could be collected (Table NM7-2). These iron concentrations typically exceeded the CCME criteria (0.30 mg/L), except for those measured in the Manness Drain during April and October. These elevated concentrations, however are within the baseline range of concentrations measured in the Manness and Domain Drains (0.21 to 0.93 mg/L and 0.15 to 1.06 mg/L, respectively).

3.2.10 Petroleum Hydrocarbons

The concentration of petroleum hydrocarbons analyzed (Benzene, Toluene, Ethyl-benzene, Xylenes (-o,-m,-p), and hydrocarbon fractions F1 to F4) were below detection limits in the Floodway Channel downstream of the construction area during each of the monthly monitoring events, with one exception (Table NM7–3). During the March monthly monitoring a toluene concentration of 1.02 μ g/L was detected, however, this was not a concern as it was below the CCME criteria Maximum Acceptable Concentration (MAC) for the protection of freshwater aquatic life (2.0 μ g/L). The concentrations of petroleum hydrocarbons were below detection limits in the Floodway Channel upstream of construction when samples could be collected during the April (spring melt), June, July, October and November monthly monitoring. Although there was no water upstream of the construction area to sample as a background condition

during the other monthly monitoring, as the concentration of petroleum hydrocarbons analyzed downstream of construction were typically below detection limits, petroleum hydrocarbons were not considered an issue during the monthly monitoring.

3.2.11 Bacterial

The comparison of *E.Coli* concentrations between baseline conditions and from samples collected for the Red River, Floodway Channel and drain sample locations during the monthly construction monitoring events for the non-flood/unfrozen and non-flood/frozen conditions are shown on Figures NM7–24 and NM7–25. The laboratory analysis method used for Total Coliform and *E.Coli* testing was the Mcoli Blue membrane filtration analysis method, which has an upper detection limit of 1500 to 2000 CFU/100 ml. Samples in which the bacteria exceed the upper limit of 2000 CFU/100 ml are identified as overgrown.

The E.Coli concentrations measured in the Floodway Channel varied along the length of the Channel and from month to month, during the monthly monitoring representing the nonflood/unfrozen condition (Figure NM7-24). The concentrations along the length of the Channel during the most months ranged from below baseline concentrations (<10 to 30 CFU/100mL), to well above baseline concentrations (1080 CFU/100mL to overgrown), except for during May (<10 to 160 CFU/100mL), which was within the baseline range. The elevated E.Coli concentrations in the Floodway Channel most frequently occurred at the Keewatin weir and Spring Hill weir locations, likely in response to elevated concentrations flowing in from the Kildare Trunk-Transcona Storm Sewer outlet. The elevated E.Coli concentrations, however, were not attributed to construction, as there were no construction activities that would release bacteria into the construction area. The E.Coli concentrations in the Red River downstream of the Outlet were typically higher compared to background concentrations upstream, except during June when all the concentrations in the Red River were below detection limits (<10 CFU/100mL). The elevated concentrations measured in the Floodway Channel and Red River were not attributed to construction because there were no construction activities that would immediately contribute to elevated E.Coli concentrations. Additionally, elevated concentrations were measured in the Red River during summer baseline monitoring (90 CFU/100 mL to overgrown).

The E.Coli concentrations measured in the Floodway Channel were generally below the detection limit of 10 CFU/100mL or within the summer baseline concentrations (16 to 630 CFU/100 mL) during the monthly monitoring representing the non-flood/frozen condition, with a few exceptions (Figure NM7-25). During January the concentrations measured in the Floodway Channel at the Keewatin weir (1670 CFU/100 mL) and Spring Hill weir (1090 CFU/100 mL) locations were higher than the summer baseline range. Likewise, the concentrations measured at the Keewatin weir (overgrown) were higher than the summer baseline range. The elevated E.Coli concentrations, however, were not attributed to construction, as there were no construction activities that would release bacteria into the construction area. The E.Coli concentrations in the Red River downstream of Outlet varied from sample location to sample location during each month. During February and March the concentrations in the Red River downstream of the Outlet were lower than the background concentration upstream of the Outlet. Whereas, during January, November and December the concentrations downstream of the Outlet were higher compared to upstream, in particular during November all of the downstream concentrations were substantially higher (overgrown). The elevated concentrations and increases in concentration were not attributed to construction, as noted above, as there were no construction activities that would release bacteria to the Floodway Channel and the concentrations in the Floodway at the Outlet were lower than in the Red River, which would have resulted in dilution if anything. Additionally, elevated concentrations were measured in the Red River during summer baseline monitoring (90 CFU/100 mL to overgrown).

The *E.Coli* concentrations measured in the Manness and Domain Drains along the West Dyke ranged from <10 to 190 CFU/100 mL and <10 to 240 CFU/100 mL, respectively, during the monthly monitoring in which samples could be collected (Table NM7-2). These concentrations were within the baseline range of concentrations measured in the Manness and Domain Drains (11 CFU/100 mL to overgrown and <10 to 650 CFU/100 mL, respectively).

3.2.12 Herbicides

The concentration of herbicides analyzed (2,4-D, AMPA, Bromoxynil, Dicamba, Glyphosate, MCPA and Picloram) were below the laboratory analysis detection limits for the samples collected in the Floodway Channel both upstream and downstream of the revegetation area during the spring melt represented by the April monthly monitoring (Table NM7–5). There were

no herbicides applied during the 2008 construction year and therefore no other herbicide monitoring was conducted beyond the spring melt condition which was sampled to assess the run-off from agricultural fields. Based on these results herbicides were not a concern during the 2008 construction year.

4.0 SUMMARY AND CONCLUSIONS

- 1. The 2008 construction surface water quality monitoring program was conducted from January to December 2008 in conjunction with the on-going construction activities that occurred from Station 11+200 to 50+430. This consisted of;
 - a. All the Channel contracts, except C-1, C-2, C4, C6a and C6b that were completed prior to 2008;
 - b. Bridge contracts for PTH 59 South (T4), CNR Redditt (T11), CPR Emerson (T15) and CPR Keewatin (T14);
 - c. The Inlet and Outlet structures; and
 - d. The West Dyke earthworks contracts (W1, W2, W3, W5, W6, W12, W22, W23 and W24).
- 2. Samples were collected from the Red River at the Inlet and Outlet, at 11 locations along the Floodway Channel including the upstream and downstream ends of the construction and revegetation zones, at 11 of the outfall drains flowing into the Floodway and at 2 drains along the West Dyke, when there was a sufficient amount of water to collect a sample.
- 3. At each sampling location, field data was obtained (conductivity, pH, temperature, EC and turbidity) and water samples were submitted to an accredited laboratory for testing (including inorganic parameters, turbidity, TSS and bacteria). Benzene, toluene, ethylbenzene and xylenes (BTEX) and hydrocarbon fractions F1 to F4 were also analyzed when samples could be collected at the upstream and downstream of construction locations. During the April (spring melt) monitoring laboratory analysis also included phenoxy acid herbicide screen (2,4-D, bromoxynil, dicamba, MCPA and picloram), AMPA and glyphosate, at the upstream and downstream of revegetation locations. These results were compared to the floodway baseline surface water data, based on sampling in April to August, 2005 and applicable CCME criteria.
- 4. There were twelve (12) monthly monitoring events, with one conducted each month following precipitation events or near the end of the month if a substantial precipitation event had not yet occurred. There was no spring or summer flood during 2008. There were fifteen (15) level I event-based monitoring events conducted between May and November, 2008 in response to precipitation levels greater than 10 mm. Additionally, an Outlet TSS Monitoring Program was conducted at the Floodway Channel Outlet from March 17 to 31, 2008 in response to the removal of the cofferdam within Contract CE1.
- 5. Results of the 15 level I event-based monitoring events conducted between May and November have typically indicated very small changes in TSS concentration in the Red River during the 2008 construction year, except for the June 6 monitoring following a rainfall close to a 5-year storm. The mass balance using the Red River flows and the laboratory TSS concentrations indicated an approximate increase in the TSS concentrations of 22 mg/L or 40%. This increase in TSS concentrations was within the CCME criteria of an allowable increase of 25 mg/L based on the background concentrations being <250 mg/L (clear flow). Nearly all the other level I event based monitoring measured a change of less than 1.0% and over half of these were a

decrease in TSS concentration, therefore, no level II event-based monitoring was required during the 2008 construction year.

- 6. The results of the Outlet TSS event-based monitoring indicated that the removal of the cofferdam from Contract CE1 at the Outlet Structure did not elevate TSS levels in the Red River above the CCME Freshwater Aquatic Life criteria.
- 7. Within the non-flood unfrozen condition in 2008, concentrations of most parameters measured in the Floodway Channel were generally within the summer baseline concentrations. During some of the months, in particular during April (spring melt), there were a few locations where parameters were elevated above the baseline concentrations. During June and September TSS concentrations in the Floodway Channel were elevated above the baseline concentrations, including at the Outlet. In comparison, *E.Coli* concentrations were typically elevated above baseline concentrations each month at most Floodway Channel Locations. For all of the parameters these concentrations elevated above baseline in the Floodway were typically lower than the concentration in the Red River, except specific conductance and chloride concentrations. Therefore the elevated concentrations in the Floodway Channel would have no effect on concentrations in the Red River or result in dilution if anything.
- 8. During the non-flood unfrozen condition monthly monitoring events, parameter concentrations measured in the Red River downstream of the Outlet were typically similar to the background concentrations upstream of the Outlet, ranging from slightly lower to slightly higher, although larger downstream increases were measured for TSS, ammonia, potassium and E.Coli concentrations. The TSS concentration increases measured in the Red River downstream of the Outlet were all less than the CCME criteria of an allowable increase of 25 mg/L and therefore not a concern. Although the September monthly laboratory results indicate an increase of 77 mg/L 500 m downstream of the Outlet, the mass balance calculations with the measured TSS concentrations and flows indicate that only an approximate increase in TSS concentration of 0.7 mg/L would result in the Red River from the Floodway Channel inputs, indicating that these values are within CCME criteria. Although increases in potassium and E.Coli were measured the concentrations were within baseline concentrations. Additionally the elevated potassium and E.Coli concentrations have no basis for evaluation, as there is no applicable CCME criterion. The ammonia concentrations measured in the Red River during June and October resulted in exceedances of the CCME un-ionized ammonia criteria both upstream and all locations downstream of the Outlet, whereas during July and September there were only a couple of exceedances. These exceedances are not a result of construction, because the background concentrations upstream of the Outlet and baseline concentrations, also exceeded the CCME criteria.
- 9. Concentrations of most parameters measured in the Floodway Channel were within the winter baseline concentrations (or the summer baseline if there was no winter baseline) except for one or two samples during the monthly monitoring events within the non-flood frozen condition. In particular concentrations of TSS, specific conductance, ammonia and potassium were higher than baseline concentrations in the Floodway Channel downstream of the Grande Pointe drain during the January monitoring. Likewise ammonia and *E.Coli* were elevated at the Keewatin and Spring Hill weir locations during the January monitoring. The elevated TSS concentration did not result in an exceedance

of the CCME criteria and was likely a result of disturbing the channel bottom while drilling through the ice cover to collect the sample. The elevated ammonia concentrations did not result in an exceedance of the CCME un-ionized ammonia criteria. The elevated potassium concentrations in the Floodway were not related to construction activities, as the fertilizer applied over the summer did not contain potassium. The elevated *E.Coli* concentrations were not attributed to construction, as there were no construction activities that would release bacteria into the construction area. Additionally, the elevated specific conductance, potassium and *E.Coli* concentrations in the Floodway channel have no basis for evaluation, as there are no applicable CCME criteria.

- 10. Parameter concentrations measured in the Red River downstream of the Outlet during the non-flood frozen condition were typically similar to the background concentrations upstream of the Outlet ranging from slightly lower to slightly higher, although concentrations measured during December tended to show larger increases. In particular concentration increases were measured for TSS, total phosphorus, ammonia and E.Coli. During December minor increases in TSS concentrations (4.5%) were measured in the Red River downstream of the Outlet compared to upstream of the Outlet, however this is within the allowable CCME criteria of a 10% increase. The ammonia concentrations in the Red River downstream of the Outlet were typically higher compared to the background concentration in the Red River upstream of the Outlet, except during March when they were lower. Only the ammonia concentrations measured during March resulted in un-ionized ammonia concentrations that exceeded the CCME criteria both upstream and downstream of the Outlet. The exceedance downstream is not a result of construction because background concentrations upstream at this time and concentrations measured during baseline monitoring also exceeded the CCME criteria. Additionally, the concentration increases in the Red River were not due to construction activities within the Floodway Channel because all concentrations in the Floodway Channel were lower than Red River concentrations.
- 11. Concentrations of most parameters measured in the Manness and Domain Drains along the West Dyke were typically within the baseline concentrations during the monthly monitoring events that samples could be collected. Specific conductance, sodium and chloride concentrations, however, were elevated above baseline concentrations in the Domain Drain during the June monthly monitoring. Likewise the sodium concentration in the Domain Drain during the May monthly monitoring was also elevated above baseline concentrations. These elevated concentrations were not a result of construction because the activities in the vicinity of the Domain Drain prior to May and June consisted of riprap application that was completed in March 2008.

5.0 **RECOMMENDATIONS**

Based on the results of the 2008 Construction monitoring events, recommendations and refinements for the ongoing monitoring should include the following;

- Continued monitoring at all of the current sample locations (including the drain locations upstream of the perimeter ditching when a drain is within an area of construction activities), following the established monthly monitoring schedule, with event-based monitoring conducted as required for the 2009 surface water monitoring program.
- The event-based monitoring in 2009 should continue to follow the protocol used in 2008 that incorporated revisions made in 2006, based on the results of a review of precipitation levels and measured TSS increases. The 2008 protocol was reviewed near the end of the 2008 monitoring program (with no changes made) and should be reviewed again during the 2009 monitoring program and revised if required as construction contracts near completion.
- The reporting protocol for the 2009 surface water monitoring program should continue to follow the slight modifications made for the start of 2008 to flag potential increases in TSS concentrations more rapidly. This included completing a level I event-based worksheet for each of the monthly monitoring events to provide an indication as to whether the sediment concentration in the Floodway will have a potential impact on the Red River downstream of the Floodway Outlet. If the worksheet indicates no potential impact then the results would be reported in the monthly monitoring report, whereas, if a potential impact is identified then MFA would be notified immediately and the laboratory would be contacted to request the TSS analysis results as soon as possible. Appropriate measures would then be developed with MFA based on the TSS laboratory results.

6.0 **REFERENCES**

- 1. TetrES Consultants Inc. / Intergroup Consultants Ltd. 2004. Proposed Floodway Expansion Project, Environmental Assessment, Environmental Impact Statement, Volumes 1 to 4. Submitted by the Manitoba Floodway Authority.
- 2. Gartner Lee Limited and Falk Environmental Inc. 2005. Screening Report Red River Floodway Expansion Project. Prepared for Infrastructure Canada.
- 3. KGS Group. 2005. Red River Floodway Expansion Baseline Surface Water Monitoring, Final Report.
- 4. KGS Group. April 2005. February 2005 Pilot Channel Baseflow Program. Memorandum 05-1100-01.19.12.07.
- 5. U.S. Environmental Protection Agency (EPA), Office of Water Quality. November, 1997. Monitoring Water Quality, Chapter 5 Water Quality Conditions (EPA 841-B-97-003).
- 6. Province of Manitoba, Manitoba Water Stewardship. 2008. Water Information Flood Forecasting Reports, Weekly River Flow Report Red River near Selkirk <u>http://www.gov.mb.ca/waterstewardship/water info/flood forecasting/index.html</u>.
- 7. Environment Canada. 2005. The Green Lane, Weather Office, Climate Data. http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_e.html
- 8. Environment Canada. 2001. Canadian Climate Normals 1971 2000, Winnipeg Manitoba. <u>http://www.climate.weatheroffice.ec.qc.ca/climate_normals/index_e.html</u>
- 9. Atmospheric Environment Service. 1990. Rainfall Intensity Duration Frequency Values, Table 2 – Winnipeg Int'l Airport, Manitoba

TABLES

Sample No.	Location	Date	pH (units)	E.C. (µS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
Monthly							
CON D/S	Floodway Channel - Station 50+500	28-Jan-08	7.48	1550	-1.1	11.64	
		25-Feb-08	6.21	1236	-0.5	11.09	
		11-Mar-08	8.12	900	2.0	23.14	
		25-Apr-08	7.94	531	1.5	61.75	
		13-May-08	8.20	732	8.2	15.74	
		06-Jun-08	7.94	539	12.8	>1100	
	- Station 50+900	11-Jul-08	8.30	324	22.3	44.88	
		12-Aug-08	7.64	830	17.2	41.93	
		02-Sep-08	7.59	917	14.5	55.44	
		07-Oct-08	7.88	705	11.6	79.05	
		07-Nov-08	8.39	959	1.3	52.68	
		18-Dec-08	7.80	192	0.1	13.33	
CON U/S	- Station 11+000	30-Jan-08	-	-	-	-	CNM - No flow, frozen
		25-Feb-08	-	-	-	-	CNM - No flow, frozen
		12-Mar-08	-	-	-	-	CNM - No flow, frozen
		25-Apr-08	8.60	574	2.20	3.13	
		13-May-08	-	-	-	-	CNM - No flow
		06-Jun-08	8.30	424	15.4	93.15	
		11-Jul-08	8.16	399	21.6	1.77	
		12-Aug-08	-	-	-	-	CNM - No Flow
		02-Sep-08	-	-	-	-	CNM - No Flow
		07-Oct-08	6.34	589	10.9	1.60	
		07-Nov-08	8.10	451	2.2	10.13	
		19-Dec-08	-	-	-	-	CNM - Frozen
VEG D/S	Floodway Channel - Station 50+500	28-Jan-08	7.48	1550	-1.1	11.64	
		25-Feb-08	6.21	1236	-0.5	11.09	
		11-Mar-08	8.12	900	2.0	23.14	
		25-Apr-08	7.94	531	1.50	61.75	
		13-May-08	8.20	732	8.2	15.74	
		06-Jun-08	7.94	539	12.8	>1100	
	- Station 50+900	11-Jul-08	8.30	324	22.3	44.88	
		12-Aug-08	7.64	830	17.2	41.93	
		02-Sep-08	7.59	917	14.5	55.44	
		07-Oct-08	7.88	705	11.6	79.05	

Sample No.	Location	Date	pH (units)	E.C. (μS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
VEG D/S	Floodway Channel - Station 50+900	07-Nov-08	8.39	959	1.3	52.68	
		18-Dec-08	7.80	192	0.1	13.33	
VEG U/S	- Station 11+000	30-Jan-08	-	-	-	-	CNM - No flow, frozen
		25-Feb-08	-	-	-	-	CNM - No flow, frozen
		12-Mar-08	-	-	-	-	CNM - No flow, frozen
		25-Apr-08	8.60	574	2.20	3.13	,
		13-May-08	-	-	-	-	CNM - No flow
		06-Jun-08	8.30	424	15.4	93.15	
		11-Jul-08	8.16	399	21.6	1.77	
		12-Aug-08	-	-	-	-	CNM - No flow
		02-Sep-08	-	-	-	-	CNM - No flow
		07-Oct-08	6.34	589	10.9	1.60	
		07-Nov-08	8.10	451	2.2	10.13	
		19-Dec-08	-	-	-	-	CNM - Frozen
S-01	Red River - Upstream of Inlet	30-Jan-08	-	-	-	-	CNM - No river water diverted
		25-Feb-08	-	-	-	-	CNM - No river water diverted
		12-Mar-08	-	-	-	-	CNM - No river water diverted
		25-Apr-08	-	-	-	-	CNM - No river water diverted
		13-May-08	-	-	-	-	CNM - No river water diverted
		06-Jun-08	-	-	-	-	CNM - No river water diverted
		11-Jul-08	-	-	-	-	CNM - No river water diverted
		12-Aug-08	-	-	-	-	CNM - No river water diverted
		02-Sep-08	-	-	-	-	CNM - No river water diverted
		07-Oct-08	-	-	-	-	CNM - No river water diverted
		07-Nov-08	-	-	-	-	CNM - No river water diverted
		18-Dec-08	-	-	-	-	CNM - No river water diverted
S-02	Red River - Upstream of Inlet (replicate of 1)	30-Jan-08	-	-	-	-	CNM - No river water diverted
		25-Feb-08	-	-	-	-	CNM - No river water diverted
		12-Mar-08	-	-	-	-	CNM - No river water diverted
		25-Apr-08	-	-	-	-	CNM - No river water diverted
		13-May-08	-	-	-	-	CNM - No river water diverted
		06-Jun-08	-	-	-	-	CNM - No river water diverted
		11-Jul-08	-	-	-	-	CNM - No river water diverted
		12-Aug-08	-	-	-	-	CNM - No river water diverted
		02-Sep-08	-	-	-	-	CNM - No river water diverted
		07-Oct-08	-	-	-	-	CNM - No river water diverted
		07-Nov-08	-	-	-	-	CNM - No river water diverted
		18-Dec-08	-	-	-	-	CNM - No river water diverted
S-03	Red River - Upstream of Inlet (replicate of 1)	30-Jan-08	-	-	-	-	CNM - No river water diverted
		25-Feb-08	-	-	-	-	CNM - No river water diverted
		12-Mar-08	-	-	-	-	CNM - No river water diverted

Sample No.	Location	Date	pH (units)	E.C. (μS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
S-03	Red River - Upstream of Inlet (replicate of 1)	25-Apr-08	-	-	-	-	CNM - No river water diverted
		13-May-08	-	-	-	-	CNM - No river water diverted
		06-Jun-08	-	-	-	-	CNM - No river water diverted
		11-Jul-08	-	-	-	-	CNM - No river water diverted
		12-Aug-08	-	-	-	-	CNM - No river water diverted
		02-Sep-08	-	-	-	-	CNM - No river water diverted
		07-Oct-08	-	-	-	-	CNM - No river water diverted
		07-Nov-08	-	-	-	-	CNM - No river water diverted
		18-Dec-08	-	-	-	-	CNM - No river water diverted
S-04	Floodway Channel - Downstream of Inlet	30-Jan-08	-	-	-	-	CNM - No river water diverted
		25-Feb-08	-	-	-	-	CNM - No river water diverted
		12-Mar-08	-	-	-	-	CNM - No river water diverted
		25-Apr-08	-	-	-	-	CNM - No river water diverted
		13-May-08	-	-	-	-	CNM - No river water diverted
		06-Jun-08	-	-	-	-	CNM - No river water diverted
		11-Jul-08	-	-	-	-	CNM - No river water diverted
		12-Aug-08	-	-	-	-	CNM - No river water diverted
		02-Sep-08	-	-	-	-	CNM - No river water diverted
		07-Oct-08	-	-	-	-	CNM - No river water diverted
		07-Nov-08	-	-	-	-	CNM - No river water diverted
		18-Dec-08	-	-	-	-	CNM - No river water diverted
S-05	Seine River Syphon Overflow	30-Jan-08	-	-	-	-	CNM - No flow, frozen
U/S	- Upstream of Perimeter Ditches	30-Jan-08	-	-	-	-	CNM - No flow, frozen
		25-Feb-08	-	-	-	-	CNM - No flow, frozen
U/S		25-Feb-08	-	-	-	-	CNM - No flow, frozen
		12-Mar-08	-	-	-	-	CNM - No flow, frozen
U/S		12-Mar-08	-	-	-	-	CNM - No flow, frozen
		25-Apr-08	-	-	-	-	CNM - No flow
U/S		25-Apr-08	-	-	-	-	CNM - No flow
		13-May-08	-	-	-	-	CNM - No flow
U/S		13-May-08	-	-	-	-	CNM - No flow
		06-Jun-08	8.30	478	16.1	44.70	
U/S		06-Jun-08	8.40	466	16.0	57.66	
		11-Jul-08	7.46	489	20.5	34.88	
U/S		11-Jul-08	7.32	482	21.2	43.18	
		12-Aug-08	-	-	-	-	CNM - No Flow
U/S		12-Aug-08	-	-	-	-	CNM - No Flow
		02-Sep-08	-	-	-	-	CNM - No Flow
U/S		02-Sep-08	-	-	-	-	CNM - No Flow
		07-Oct-08	6.60	661	10.6	27.66	
U/S		07-Oct-08	6.65	655	10.7	25.07	

Sample No.	Location	Date	pH (units)	E.C. (μS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
S-05	Seine River Syphon Overflow	07-Nov-08	8.10	617	2.4	37.53	
U/S	- Upstream of Perimeter Ditches	07-Nov-08	7.60	626	2.4	34.61	
		18-Dec-08	-	-	-	-	CNM - Frozen
U/S		18-Dec-08	-	-	-	-	CNM - Frozen
S-06	Grande Pointe Diversion Drop Structure	30-Jan-08	-	-	-	-	CNM - No flow, frozen
U/S	- Upstream of Perimeter Ditches	30-Jan-08	-	-	-	-	CNM - No flow, frozen
		25-Feb-08	-	-	-	-	CNM - No flow, frozen
U/S		25-Feb-08	-	-	-	-	CNM - No flow, frozen
		12-Mar-08	-	-	-	-	CNM - No flow, frozen
U/S		12-Mar-08	-	-	-	-	CNM - No flow, frozen
		25-Apr-08	8.30	524	2.2	20.14	
U/S		25-Apr-08	-	-	-	-	CNM - No flow
		13-May-08	7.28	825	8.0	15.03	
U/S		13-May-08	7.74	636	7.6	20.99	
		06-Jun-08	8.20	503	13.7	374.1	
U/S		06-Jun-08	8.10	518	14.4	413.3	
		11-Jul-08	8.49	756	24.8	18.30	
U/S		11-Jul-08	7.46	405	22.1	7.06	
		12-Aug-08	8.28	762	17.9	37.86	
U/S		12-Aug-08	7.69	441	17.9	39.82	
		02-Sep-08	-	-	-	-	CNM - No Flow
U/S		02-Sep-08	-	-	-	-	CNM - No Flow
		07-Oct-08	6.76	799	11.8	10.57	
U/S		07-Oct-08	6.62	757	10.3	12.15	
		07-Nov-08	8.00	694	1.8	31.45	
U/S		07-Nov-08	7.90	534	1.8	21.72	
		18-Dec-08	-	-	-	-	CNM - Frozen
U/S		18-Dec-08	-	-	-	-	CNM - Frozen
S-07	Centreline Drop Structure	30-Jan-08	-	-	-	-	CNM - No flow, frozen
U/S	- Upstream of Perimeter Ditches	30-Jan-08	-	-	-	-	CNM - No flow, frozen
		25-Feb-08	-	-	-	-	CNM - No flow, frozen
U/S		25-Feb-08	-	-	-	-	CNM - No flow, frozen
		12-Mar-08	-	-	-	-	CNM - No flow, frozen
U/S		12-Mar-08	-	-	-	-	CNM - No flow, frozen
		25-Apr-08	8.30	593	3.6	12.05	
U/S		25-Apr-08	8.40	539	3.4	11.87	
		13-May-08	7.92	1758	12.0	41.29	
U/S		13-May-08	7.94	978	11.2	17.38	
		06-Jun-08	8.20	782	16.2	213.9	
U/S		06-Jun-08	8.00	671	14.8	217.6	
		11-Jul-08	8.70	617	23.0	10.25	

Sample No.	Location	Date	pH (units)	E.C. (μS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
U/S	- Upstream of Perimeter Ditches	11-Jul-08	8.45	632	22.1	14.00	
		12-Aug-08	7.96	1273	18.0	51.00	
U/S		12-Aug-08	8.39	722	18.1	42.85	
		02-Sep-08	8.02	948	15.3	24.21	
U/S		02-Sep-08	7.93	1133	16.1	28.35	
		07-Oct-08	7.29	988	11.8	98.08	
U/S		07-Oct-08	6.76	1004	11.4	26.86	
		07-Nov-08	8.00	1169	2.6	20.84	
U/S		07-Nov-08	7.90	1261	2.0	21.30	
		18-Dec-08	-	-	-	-	CNM - Frozen
U/S		18-Dec-08	-	-	-	-	CNM - Frozen
S-08	Deacon Reservoir Drain	30-Jan-08	-	-	-	-	CNM - No flow
		25-Feb-08	-	-	-	-	CNM - No flow
		12-Mar-08	-	-	-	-	CNM - No flow
		25-Apr-08	-	-	-	-	CNM - No flow
		13-May-08	-	-	-	-	CNM - No flow
		06-Jun-08	-	-	-	-	CNM - No flow
		11-Jul-08	-	-	-	-	CNM - No flow
		12-Aug-08	-	-	-	-	CNM - No flow
		02-Sep-08	-	-	-	-	CNM - No flow
		07-Oct-08	-	-	-	-	CNM - No flow
		07-Nov-08	-	-	-	-	CNM - No flow
		18-Dec-08	-	-	-	-	CNM - No flow
S-09	Cooks Creek Diversion Drop Structure	31-Jan-08	-	-	-	-	CNM - No flow, frozen
U/S	- Upstream of Perimeter Ditches	31-Jan-08	-	-	-	-	CNM - No flow, frozen
		25-Feb-08	-	-	-	-	CNM - No flow, frozen
U/S		25-Feb-08	-	-	-	-	CNM - No flow, frozen
		12-Mar-08	-	-	-	-	CNM - No flow, frozen
U/S		12-Mar-08	-	-	-	-	CNM - No flow, frozen
		25-Apr-08	8.60	483	4.00	35.22	
U/S		25-Apr-08	8.60	480	4.00	48.19	
		13-May-08	7.95	6441	12.3	17.45	
U/S		13-May-08	7.93	854	11.9	18.28	
		06-Jun-08	8.40	785	16.4	22.30	
U/S		06-Jun-08	8.10	690	15.8	42.17	
		11-Jul-08	9.04	1530	20.6	21.58	
U/S		11-Jul-08	8.93	1592	20.7	19.47	
		12-Aug-08	8.79	1837	20.1	28.01	
U/S		12-Aug-08	7.69	1550	18.0	34.20	
		02-Sep-08	7.91	1050	16.0	49.25	
U/S		02-Sep-08	7.83	574	14.6	33.44	

Sample No.	Location	Date	pH (units)	E.C. (μS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
S-09	Cooks Creek Diversion Drop Structure	07-Oct-08	7.03	1085	11.6	31.70	
U/S	- Upstream of Perimeter Ditches	07-Oct-08	6.76	965	11.9	15.36	
		07-Nov-08	8.00	1964	2.2	33.40	
U/S		07-Nov-08	9.00	6900	2.1	29.25	
		18-Dec-08	-	-	-	-	CNM - Frozen
U/S		18-Dec-08	-	-	-	-	CNM - Frozen
S-10	North Bibeau Drain Drop Structure	30-Jan-08	-	-	-	-	CNM - No flow, frozen
U/S	- Upstream of Perimeter Ditches	30-Jan-08	-	-	-	-	CNM - No flow, frozen
		25-Feb-08	-	-	-	-	CNM - No flow, frozen
U/S		25-Feb-08	-	-	-	-	CNM - No flow, frozen
		12-Mar-08	-	-	-	-	CNM - No flow, frozen
U/S		12-Mar-08	-	-	-	-	CNM - No flow, frozen
		25-Apr-08	8.50	981	3.60	7.71	·
U/S		25-Apr-08	8.20	634	2.60	9.41	
		13-May-08	8.01	2520	14.0	12.46	
U/S		13-May-08	7.23	1419	9.8	6.55	
		06-Jun-08	8.20	664	15.9	336.1	
U/S		06-Jun-08	8.00	375	15.7	285.9	
		11-Jul-08	8.31	1070	22.1	3.63	
U/S		11-Jul-08	7.22	842	19.6	2.36	
		12-Aug-08	7.98	2950	18.5	36.19	
U/S		12-Aug-08	7.45	1051	18.1	7.74	
		02-Sep-08	7.91	996	14.9	11.82	
U/S		02-Sep-08	-	-	-	-	CNM - No flow
		07-Oct-08	7.59	1509	13.1	5.11	
U/S		07-Oct-08	6.79	1064	10.8	4.49	
		07-Nov-08	7.90	368	1.3	18.93	
U/S		07-Nov-08	7.80	1295	1.0	5.54	
		18-Dec-08	-	-	-	-	CNM - Frozen
U/S		18-Dec-08	-	-	-	-	CNM - Frozen
S-11	Country Villa Estates Drain	31-Jan-08	-	-	-	-	CNM - No flow
		25-Feb-08	-	-	-	-	CNM - No flow
		11-Mar-08	-	-	-	-	CNM - No flow
		25-Apr-08	-	-	-	-	CNM - No flow
		13-May-08	-	-	-	-	CNM - No flow
		06-Jun-08	7.75	918	14.6	31.44	
		11-Jul-08	7.60	352	21.1	43.61	
		12-Aug-08	7.09	670	18.4	11.74	
		02-Sep-08	7.55	535	14.5	18.95	
		07-Oct-08	8.06	899	12.0	2.58	
		07-Nov-08	8.26	964	0.7	68.81	

Sample No.	Location	Date	pH (units)	E.C. (μS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
S-11	Country Villa Estates Drain	18-Dec-08	-	-	-	-	CNM - Frozen
S-12	Kildare Trunk-Transcona Storm Sewer Outlet	31-Jan-08	-	-	-	-	CNM - No flow
		25-Feb-08	-	-	-	-	CNM - No flow
		12-Mar-08	-	-	-	-	CNM - No flow
		25-Apr-08	-	-	-	-	CNM - Water Not Accessible
		13-May-08	7.24	2080	8.8	34.61	
		06-Jun-08	8.20	694	15.1	110.5	
		11-Jul-08	6.84	2760	16.6	64.88	
		12-Aug-08	7.49	465	17.9	78.60	
		02-Sep-08	7.81	561	16.1	36.97	
		07-Oct-08	6.64	988	12.3	49.95	
		07-Nov-08	7.90	7130	4.4	144.8	
		18-Dec-08	-	-	-	-	CNM - Frozen
S-13	Floodway Channel - D/S of Grande Pointe Drain	30-Jan-08	6.82	3.52	-0.5	138.2	
		26-Feb-08	-	-	-	-	CNM - No flow, frozen
		12-Mar-08	-	-	-	-	CNM - No flow, frozen
		25-Apr-08	8.30	456	2.40	44.92	
		13-May-08	7.70	635	8.0	41.59	
		06-Jun-08	8.30	488	14.9	102.3	
		11-Jul-08	7.83	470	22.2	28.29	
		12-Aug-08	7.92	600	18.2	41.24	
		02-Sep-08	7.95	674	15.8	39.53	
		07-Oct-08	7.25	679	10.7	22.54	
		07-Nov-08	8.00	629	1.9	40.15	
		19-Dec-08	6.93	12.76	-1.5	6.93	
S-14	Floodway Channel - D/S of North Bibeau Drain	30-Jan-08	7.30	1160	-0.9	38.60	
		26-Feb-08	7.47	761	0.0	12.64	
		12-Mar-08	8.05	1100	1.4	52.62	
		25-Apr-08	8.40	451	3.50	255.5	
		13-May-08	8.00	736	12.5	160.7	
		06-Jun-08	8.40	782	17.1	82.13	
		11-Jul-08	7.81	542	21.4	80.96	
		12-Aug-08	8.28	637	18.9	33.85	
		02-Sep-08	8.04	752	16.7	58.24	
		02-Sep-08 07-Oct-08	6.83	732	10.7	38.11	
		07-Nov-08	8.00	776	1.8	158.7	
0.04		19-Dec-08	6.52	1148	-1.4	7.2	
S-21	Floodway Channel - Keewatin Weir	31-Jan-08	7.54	1190	-0.7	8.34	
		26-Feb-08	7.75	945	1.0	9.90	
		12-Mar-08	8.13	900	1.8	17.79	

Sample No.	Location	Date	pH (units)	E.C. (μS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
S-21	Floodway Channel - Keewatin Weir	25-Apr-08	8.14	1301	3.40	70.47	
		13-May-08	7.86	829	12.6	51.99	
		06-Jun-08	7.92	345	13.4	201.5	
		11-Jul-08	8.40	368	20.7	50.07	
		12-Aug-08	7.39	449	17.2	77.31	
		02-Sep-08	7.84	323	14.4	93.66	
		07-Oct-08	7.87	787	12.8	46.02	
		07-Nov-08	8.64	1294	2.0	67.24	
		19-Dec-08	6.82	933	-0.5	3.34	
S-22	Springfield Road Drain Drop Structure	31-Jan-08	-	-	-	-	CNM - No flow, frozen
U/S	- Upstream of Perimeter Ditches	31-Jan-08	-	-	-	-	CNM - No flow, frozen
		26-Feb-08	-	-	-	-	CNM - No flow, frozen
U/S		26-Feb-08	-	-	-	-	CNM - No flow, frozen
		12-Mar-08	-	-	-	-	CNM - No flow, frozen
U/S		12-Mar-08	-	-	-	-	CNM - No flow, frozen
		25-Apr-08	8.50	684	4.50	4.97	
U/S		25-Apr-08	8.06	751	2.30	0.80	
		13-May-08	8.36	896	16.0	1.95	
U/S		13-May-08	8.15	938	12.9	1.58	
		06-Jun-08	7.76	909	15.0	36.31	
U/S		06-Jun-08	7.65	889	14.0	56.43	
		11-Jul-08	8.90	284	22.4	1.96	
U/S		11-Jul-08	-	-	-	-	CNM - No flow
		12-Aug-08	7.51	880	18.2	11.35	
U/S		12-Aug-08	7.26	579	17.8	29.54	
		02-Sep-08	7.81	702	13.9	23.21	
U/S		02-Sep-08	7.62	714	14.0	3.83	
		07-Oct-08	8.44	863	12.8	4.74	
U/S		07-Oct-08	8.39	1058	12.2	6.07	
		07-Nov-08	8.40	1110	0.3	18.90	
U/S		07-Nov-08	8.39	1205	0.0	5.99	
		18-Dec-08	-	-	-	-	CNM - Frozen
U/S		18-Dec-08	-	-	-	-	CNM - Frozen
S-23	Floodway Channel - Spring Hill Weir	31-Jan-08	7.31	1276	0.0	14.30	
		26-Feb-08	7.41	967	0.3	11.21	
		12-Mar-08	8.37	900	1.2	11.5	
		25-Apr-08	8.19	1170	2.80	79.45	
		13-May-08	7.61	865	11.2	29.33	
		06-Jun-08	7.95	715	15.6	49.73	

S-23 Floodway Channel - Spring Hill Weir 11-Jul-08 8.20 352 21.1 43.61 12-Aug-08 7.73 1017 18.2 12.02 02-Sep-08 7.76 496 12.3 63.50 07-Nov-08 8.74 4984 1.7 110.8 18-Dec-08 8.00 65.1 0.0 13.14 S-25 Floodway Channel - Dunning Weir 25-Feb-08 6.49 1087 -1.0 11.10 25-Feb-08 6.49 1087 -1.0 39.18 11-Mar-08 - - - - CMM - No flow, frozen 25-Feb-08 6.80 504 31.1 42.65	Sample No.	Location	Date	pH (units)	E.C. (μS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
S-26 Skholny Drain Drop Structure 22-Sep-08 7.16 296 13.5 110.9 S-26 Floodway Channel - Dunning Weir 23-Sep-08 7.80 489 1.7 110.8 S-25 Floodway Channel - Dunning Weir 23-Feb-08 8.00 66.1 0.0 13.14 25-Feb-08 6.49 1087 -1.0 11.10 11.10 25-Feb-08 6.49 1087 -1.0 39.18 11.11 11-Mar-08 - - - CMM - No flow, frozen 25-Apr-08 6.80 504 3.10 99.56 13-May-08 8.13 815 14.7 96.10 11-Jub/0-8 8.50 346 22.0 45.33 12-Aug-08 7.88 896 18.8 41.10 02-Sep-08 7.30 94.6 0.1 14.20 11-Jub/08 8.57 1196 0.3 97.42 11-Mar-08 - - CNM - No flow, frozen 25-Apr-08 <td< td=""><td>S-23</td><td>Floodway Channel - Spring Hill Weir</td><td>11-Jul-08</td><td>8.20</td><td>352</td><td>21.1</td><td>43.61</td><td></td></td<>	S-23	Floodway Channel - Spring Hill Weir	11-Jul-08	8.20	352	21.1	43.61	
S-26 Skholny Drain Drop Structure 22-Sep-08 7.16 296 13.5 110.9 S-26 Floodway Channel - Dunning Weir 23-Sep-08 7.80 489 1.7 110.8 S-25 Floodway Channel - Dunning Weir 23-Feb-08 8.00 66.1 0.0 13.14 25-Feb-08 6.49 1087 -1.0 11.10 11.10 25-Feb-08 6.49 1087 -1.0 39.18 11.11 11-Mar-08 - - - CMM - No flow, frozen 25-Apr-08 6.80 504 3.10 99.56 13-May-08 8.13 815 14.7 96.10 11-Jub/0-8 8.50 346 22.0 45.33 12-Aug-08 7.88 896 18.8 41.10 02-Sep-08 7.30 94.6 0.1 14.20 11-Jub/08 8.57 1196 0.3 97.42 11-Mar-08 - - CNM - No flow, frozen 25-Apr-08 <td< td=""><td></td><td></td><td>12-Aug-08</td><td>7.73</td><td>1017</td><td>18.2</td><td>12.02</td><td></td></td<>			12-Aug-08	7.73	1017	18.2	12.02	
S-25 Floodway Channel - Dunning Weir 7.36 (07-Nov-08			02-Sep-08	7.16	296	13.5	110.9	
07-Nov-08 8.74 884 1.7 110.8 S-25 Floodway Channel - Dunning Weir 28-Jan-08 7.54 979 1.0 11.10 25-Feb-08 6.49 1087 -1.0 39.18 - 11-Mar-08 - - - - - CNM - No flow, frozen 25-Feb-08 6.49 1087 -1.0 39.18 - - 11-Mar-08 - - - - - CNM - No flow, frozen 25-Apr-08 6.80 504 3.10 99.56 - - 13-May-08 8.51 768 11.4 42.65 - - - CNM - No flow, frozen 12-Aug-08 7.93 650 11.4 62.51 - - - CNM - No flow, frozen 02-Sep.08 7.98 653 11.8 62.51 - - - CNM - No flow, frozen 25-76b-08 - - - - CNM - No flow, frozen								
S-25 Floodway Channel - Dunning Weir 18-Dec-08 8.00 65.1 0.0 13.14 S-25 Floodway Channel - Dunning Weir 28-Jan-08 7.54 979 -1.0 11.10 25-Feb-08 6.49 1087 -1.0 39.18 25-Apr-08 6.80 504 3.10 99.56 11-Mar-08 - - - CNM - No flow, frozen 25-Apr-08 6.80 504 3.10 99.56 13-May-08 8.51 7.68 11.4 42.65 06-Jun-08 8.13 815 14.7 96.10 11-Jul-08 8.50 346 22.0 45.33 12-Aug-08 7.88 896 18.8 41.10 02-Sep-08 7.93 6936 15.9 45.69 07-Nov-08 8.75 1196 0.3 97.42 18-Dec-08 7.80 94.6 0.1 14.20 25-Apr-08 7.91 703 2.40 4.47								
S-25 Floodway Channel - Dunning Weir 28-Jan-08 7.54 979 -1.0 11.10 25-Feb-08 6.49 1087 -1.0 39.18 - 11-Mar-08 - - - CNM - No flow, frozen 25-Apr-08 6.80 504 3.10 99.56 13-May-08 8.51 7.68 11.4 42.65 06-Jun-08 8.13 815 11.4 42.65 07-Oct-08 7.88 896 18.8 41.10 02-Sep-08 7.30 696 15.9 45.69 07-Oct-08 7.86 653 11.8 62.51 07-Nov-08 8.57 1196 0.3 97.42 18-Dec-08 7.80 94.6 0.1 14.20 19.5 45.69 - - - CNM - No flow, frozen 19.5 45.7 1196 0.3 97.42 - 18.0 11.4 12.0 - - CNM - No flow, frozen			18-Dec-08		65.1			
25-Feb-08 6.49 1087 -1.0 39.18 11-Mar-08 - - - CNM - No flow, frozen 25-Apr-08 6.80 504 3.10 99.56 13-May-08 8.51 768 11.4 42.65 06-Jun-08 8.13 815 14.7 96.10 11-Jul-08 8.50 346 22.0 45.33 12-Aug-08 7.88 896 18.8 41.10 02-Sep-08 7.98 653 11.8 62.51 07-Nov-08 8.57 1196 0.3 97.42 18-Dec-08 7.80 94.6 0.1 14.20 28-Jan-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 25-Apr-08 7.56 343 2.50 5.05 U/S - - - CNM - No flow, frozen	S-25	Floodway Channel - Dunning Weir		7.54		-1.0		
Interview Interview <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
I3-May-08 8.51 768 11.4 42.65 06-Uur-08 8.13 815 14.7 96.10 11-Jul-08 8.50 346 22.0 45.33 12-Aug-08 7.88 896 18.8 41.10 02-Sep-08 7.93 696 15.9 45.69 07-Oct-08 7.98 653 11.8 62.51 07-Nov-08 8.57 1196 0.3 97.42 18-Dec-08 7.80 94.6 0.1 14.20 28-Jan-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 25-Apr-08 7.56 343 2.50 5.05 U/S - - - CNM - No flow, frozen 13-May-08 8.16 1514 11.7 35.80 U/S - - - CNM - No flow, frozen <t< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>1</td><td>CNM - No flow, frozen</td></t<>				-	-	-	1	CNM - No flow, frozen
I3-May-08 8.51 768 11.4 42.65 06-Uur-08 8.13 815 14.7 96.10 11-Jul-08 8.50 346 22.0 45.33 12-Aug-08 7.88 896 18.8 41.10 02-Sep-08 7.93 696 15.9 45.69 07-Oct-08 7.98 653 11.8 62.51 07-Nov-08 8.57 1196 0.3 97.42 18-Dec-08 7.80 94.6 0.1 14.20 28-Jan-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 25-Apr-08 7.56 343 2.50 5.05 U/S - - - CNM - No flow, frozen 13-May-08 8.16 1514 11.7 35.80 U/S - - - CNM - No flow, frozen <t< td=""><td></td><td></td><td>25-Apr-08</td><td>6.80</td><td>504</td><td>3.10</td><td>99.56</td><td>,</td></t<>			25-Apr-08	6.80	504	3.10	99.56	,
06-Jun-08 8.13 815 14.7 96.10 11-Jul-08 8.50 346 22.0 45.33 12-Aug-08 7.88 896 18.8 41.10 02-Sep-08 7.93 696 15.9 45.69 07-Oct-08 7.98 653 11.8 62.51 07-Oct-08 7.80 94.6 0.1 14.20 18-Dec-08 7.80 94.6 0.1 14.20 28-Jan-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 25-Apr-08 7.90 7.91 7.03 2.40 4.47 U/S - Upstream of Skholny Drain 25-Apr-08 7.91 7.03 2.40 4.47 13-May-08 8.04 875 11.4 12.04 U/S 06-Jun-08 7.90 111.6 14.0 50.52 U/S 01/S 8.00 362 21.5 8.58 U/S </td <td></td> <td></td> <td></td> <td></td> <td>768</td> <td></td> <td></td> <td></td>					768			
11-Jul-08 8.50 346 22.0 45.33 12-Aug-08 7.88 896 18.8 41.10 02-Sep-08 7.93 696 15.9 45.69 07-Oct-08 7.98 653 11.8 62.51 07-Nov-08 8.57 1196 0.3 97.42 18-Dec-08 7.80 94.6 0.1 14.20 28-Jan-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 13-May-08 8.04 875 11.4 12.04 U/S 0/S 11-Jul-08 8.00								
12-Aug-08 7.88 896 18.8 41.10 12-Aug-08 7.88 896 15.9 45.69 07-Oct-08 7.98 653 11.8 62.51 07-Nov-08 8.57 1196 0.3 97.42 18-Dec-08 7.80 94.6 0.1 14.20 S-26 Skholny Drain Drop Structure 28-Jan-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 11-Mar-08 - - CNM - No flow, frozen 11-Mar-08 - - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 13-May-08 8.04 875 11.4 12.04 U/S - - - - CNM - No flow, frozen 13-May-08 8.04 875 11.4 12.04 11.404 U/S 06-Jun-08 7.71 555 16.3 48.38 -			11-Jul-08		346			
02-Sep-08 7.93 696 15.9 45.69 07-Oct-08 7.98 653 11.8 62.51 07-Nov-08 8.57 1196 0.3 97.42 18-Dec-08 7.80 94.6 0.1 14.20 18-Dec-08 7.80 94.6 0.1 14.20 28-Jan-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 25-Apr-08 7.56 343 2.50 5.05 U/S - - - CNM - No flow, frozen 13-May-08 8.04 875 11.4 12.04 U/S - - - - CNM - No flow, frozen U/S - - 7.03 2.40			12-Aug-08		896			
07-Oct-08 7.98 653 11.8 62.51 07-Nov-08 8.57 1196 0.3 97.42 18-Dec-08 7.80 94.6 0.1 14.20 S-26 Skholny Drain Drop Structure 28-Jan-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 11-Mar-08 - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 25-Apr-08 7.56 343 2.50 5.05 U/S - Upstream of Skholny Drain 25-Apr-08 7.91 703 2.40 4.47 13-May-08 8.04 875 11.4 12.04 11.40 U/S 06-Jun-08 7.71 555 16.3 48.38 16.10 U/S 06-Jun-08 8.00 384 21.7 5.99 11-Jul-08 8.00 384 21.7 5.99 U/S 02-Sep-08 7.32 734 18.4								
O7-Nov-08 8.57 1196 0.3 97.42 18-Dec-08 7.80 94.6 0.1 14.20 S-26 Skholny Drain Drop Structure 28-Jan-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 25-Apr-08 7.56 343 2.50 5.05 U/S - Upstream of Skholny Drain 25-Apr-08 7.91 703 2.40 4.47 13-May-08 8.04 875 11.4 12.04 - U/S 0.4.07 7.90 11.16 14.0 50.52 U/S 0.4.08 7.90 11.14 12.04 - U/S 0.6-Jun-08 7.90 111.6 14.0 50.52 - U/S 0.1116 14.0 50.52 - - - - U/S 0.2-Sep-08 7.30 1116 14.0								
18-Dec-08 7.80 94.6 0.1 14.20 S-26 Skholny Drain Drop Structure 28-Jan-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 125-Apr-08 7.56 343 2.50 5.05 U/S - Upstream of Skholny Drain 25-Apr-08 7.51 343 2.50 5.05 U/S - Upstream of Skholny Drain 25-Apr-08 7.91 703 2.40 4.47 13-May-08 8.04 875 11.4 12.04 11.40 11.40 U/S 06-Jun-08 7.71 555 16.3 48.38 11.40 16.40 50.52 U/S 01-S 11-Jul-08 8.00 362 21.5 8.58 11.30 12-Aug-08 7.32 734 18.4 47.27 12-Aug-08								
S-26 Skholny Drain Drop Structure 28-Jan-08 - - - CNM - No flow, frozen 25-Feb-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 11-Mar-08 - - - CNM - No flow, frozen 12-Apr-08 7.56 343 2.50 5.05 25-Apr-08 7.91 703 2.40 4.47 13-May-08 8.04 875 11.4 12.04 13-May-08 8.16 1514 11.7 35.80 06-Jun-08 7.71 555 16.3 48.38 06-Jun-08 7.90 1116 14.0 50.52 U/S 11-Jul-08 8.00 362 21.5 8.58 U/S 12-Aug-08 7.32 734 18.4 47.27 12-Aug-08 7.35 601 14.1 21.36 21.5 <								
U/S - Upstream of Skholny Drain 11-Mar-08 - - - CNM - No flow, frozen U/S - Upstream of Skholny Drain 25-Apr-08 7.56 343 2.50 5.05 U/S 25-Apr-08 7.91 703 2.40 4.47 - U/S 13-May-08 8.04 875 11.4 12.04 - U/S 06-Jun-08 7.90 1116 14.0 50.52 - U/S 06-Jun-08 7.90 1116 14.0 50.52 - U/S 11-Jul-08 8.00 362 21.5 8.58 - - U/S 11-Jul-08 8.00 384 21.7 5.99 - - - - - - - - - - CNM - No flow, frozen U/S U/S 07-State 7.91 703 2.40 4.47 -	S-26	Skholny Drain Drop Structure		-	-	-	1	CNM - No flow, frozen
U/S - Upstream of Skholny Drain 11-Mar-08 - - - CNM - No flow, frozen U/S - Upstream of Skholny Drain 25-Apr-08 7.56 343 2.50 5.05 U/S 25-Apr-08 7.91 703 2.40 4.47 - U/S 13-May-08 8.04 875 11.4 12.04 - U/S 06-Jun-08 7.90 1116 14.0 50.52 - U/S 06-Jun-08 7.90 1116 14.0 50.52 - U/S 11-Jul-08 8.00 362 21.5 8.58 - - U/S 11-Jul-08 8.00 384 21.7 5.99 - - - - - - - - - - CNM - No flow, frozen U/S U/S 07-State 7.91 703 2.40 4.47 -				-	-	-	-	
U/S - Upstream of Skholny Drain 25-Apr-08 7.91 703 2.40 4.47 U/S 13-May-08 8.04 875 11.4 12.04 U/S 13-May-08 8.16 1514 11.7 35.80 U/S 06-Jun-08 7.71 555 16.3 48.38 06-Jun-08 7.90 1116 14.0 50.52 11-Jul-08 8.00 362 21.5 8.58 U/S 11-Jul-08 8.00 384 21.7 5.99 U/S 12-Aug-08 7.32 734 18.4 47.27 U/S 02-Sep-08 7.35 601 14.1 21.36 U/S 02-Sep-08 7.49 677 14.2 18.70 U/S 07-Oct-08 7.94 607 11.1 3.55 U/S 07-Nov-08 7.49 1070 -0.3 20.20 U/S 07-Nov-08 7.49 1070 -0.3 20.20			11-Mar-08	-	-	-	-	
U/S 13-May-08 8.04 875 11.4 12.04 U/S 13-May-08 8.16 1514 11.7 35.80 U/S 06-Jun-08 7.71 555 16.3 48.38 U/S 06-Jun-08 7.90 1116 14.0 50.52 11-Jul-08 8.00 362 21.5 8.58 U/S 11-Jul-08 8.00 384 21.7 5.99 12-Aug-08 7.32 734 18.4 47.27 U/S 02-Sep-08 7.35 601 14.1 21.36 U/S 02-Sep-08 7.49 677 14.2 18.70 U/S 07-Oct-08 7.85 817 12.5 5.85 U/S 07-Nov-08 7.49 607 11.1 3.55 U/S 07-Nov-08 7.49 1070 -0.3 20.20			25-Apr-08	7.56	343	2.50	5.05	
U/S 13-May-08 8.16 1514 11.7 35.80 U/S 06-Jun-08 7.71 555 16.3 48.38 U/S 06-Jun-08 7.90 1116 14.0 50.52 11-Jul-08 8.00 362 21.5 8.58 U/S 11-Jul-08 8.00 384 21.7 5.99 U/S 12-Aug-08 7.32 734 18.4 47.27 U/S 02-Sep-08 7.35 601 14.1 21.36 U/S 02-Sep-08 7.49 677 14.2 18.70 U/S 07-Oct-08 7.85 817 12.5 5.85 U/S 07-Nov-08 7.49 607 11.1 3.55 U/S 07-Nov-08 7.49 1070 -0.3 20.20	U/S	- Upstream of Skholny Drain	25-Apr-08	7.91	703	2.40	4.47	
U/S 06-Jun-08 7.71 555 16.3 48.38 06-Jun-08 7.90 1116 14.0 50.52 11-Jul-08 8.00 362 21.5 8.58 U/S 11-Jul-08 8.00 384 21.7 5.99 U/S 12-Aug-08 7.32 734 18.4 47.27 U/S 02-Sep-08 7.35 601 14.1 21.36 U/S 02-Sep-08 7.49 677 14.2 18.70 U/S 07-Oct-08 7.85 817 12.5 5.85 U/S 07-Oct-08 7.49 607 11.1 3.55 U/S 07-Nov-08 7.49 1070 -0.3 20.20			13-May-08	8.04		11.4		
U/S 06-Jun-08 7.90 1116 14.0 50.52 U/S 11-Jul-08 8.00 362 21.5 8.58 11-Jul-08 8.00 384 21.7 5.99 12-Aug-08 7.32 734 18.4 47.27 U/S 12-Aug-08 7.51 886 18.4 55.40 U/S 02-Sep-08 7.35 601 14.1 21.36 U/S 02-Sep-08 7.49 677 14.2 18.70 U/S 07-Oct-08 7.85 817 12.5 5.85 U/S 07-Oct-08 7.49 607 11.1 3.55 U/S 07-Nov-08 7.49 1070 -0.3 20.20 U/S 07-Nov-08 8.25 786 0.8 6.54	U/S		13-May-08					
U/S 11-Jul-08 8.00 362 21.5 8.58 11-Jul-08 8.00 384 21.7 5.99 12-Aug-08 7.32 734 18.4 47.27 12-Aug-08 7.51 886 18.4 55.40 02-Sep-08 7.35 601 14.1 21.36 U/S 02-Sep-08 7.49 677 14.2 18.70 U/S 07-Oct-08 7.85 817 12.5 5.85 U/S 07-Oct-08 7.49 607 11.1 3.55 U/S 07-Nov-08 7.49 1070 -0.3 20.20 U/S 07-Nov-08 8.25 786 0.8 6.54								
U/S 11-Jul-08 8.00 384 21.7 5.99 U/S 12-Aug-08 7.32 734 18.4 47.27 U/S 12-Aug-08 7.51 886 18.4 55.40 U/S 02-Sep-08 7.35 601 14.1 21.36 U/S 02-Sep-08 7.49 677 14.2 18.70 U/S 07-Oct-08 7.85 817 12.5 5.85 U/S 07-Oct-08 7.49 607 11.1 3.55 U/S 07-Nov-08 7.49 1070 -0.3 20.20 U/S 07-Nov-08 8.25 786 0.8 6.54	U/S							
U/S 12-Aug-08 7.32 734 18.4 47.27 12-Aug-08 7.51 886 18.4 55.40 02-Sep-08 7.35 601 14.1 21.36 02-Sep-08 7.49 677 14.2 18.70 07-Oct-08 7.85 817 12.5 5.85 07-Oct-08 7.49 607 11.1 3.55 07-Nov-08 7.49 1070 -0.3 20.20 U/S 07-Nov-08 8.25 786 0.8 6.54								
U/S 12-Aug-08 7.51 886 18.4 55.40 U/S 02-Sep-08 7.35 601 14.1 21.36 U/S 02-Sep-08 7.49 677 14.2 18.70 U/S 07-Oct-08 7.85 817 12.5 5.85 U/S 07-Oct-08 7.49 607 11.1 3.55 U/S 07-Nov-08 7.49 1070 -0.3 20.20	U/S							
U/S 02-Sep-08 7.35 601 14.1 21.36 02-Sep-08 7.49 677 14.2 18.70 07-Oct-08 7.85 817 12.5 5.85 07-Oct-08 7.94 607 11.1 3.55 07-Nov-08 7.49 1070 -0.3 20.20 U/S 07-Nov-08 8.25 786 0.8 6.54			¥					
U/S 02-Sep-08 7.49 677 14.2 18.70 07-Oct-08 7.85 817 12.5 5.85 U/S 07-Oct-08 7.94 607 11.1 3.55 07-Nov-08 7.49 1070 -0.3 20.20 U/S 07-Nov-08 8.25 786 0.8 6.54	U/S							
U/S 07-Oct-08 7.85 817 12.5 5.85 07-Oct-08 7.94 607 11.1 3.55 07-Nov-08 7.49 1070 -0.3 20.20 U/S 07-Nov-08 8.25 786 0.8 6.54	11/0							
U/S 07-Oct-08 7.94 607 11.1 3.55 07-Nov-08 7.49 1070 -0.3 20.20 U/S 07-Nov-08 8.25 786 0.8 6.54	0/S							
07-Nov-08 7.49 1070 -0.3 20.20 U/S 07-Nov-08 8.25 786 0.8 6.54	11/0							
U/S 07-Nov-08 8.25 786 0.8 6.54	0/5							
	11/9							
	0/5						-	CNIM - Frozen
U/S 18-Dec-08 CNM - Frozen	11/5			_				

Sample No.	Location	Date	pH (units)	E.C. (μS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
S-27	Ashfield Drain Drop Structure	28-Jan-08	-	-	-	-	CNM - No flow, frozen
S-27	Ashfield Drain Drop Structure	25-Feb-08	-	-	-	-	CNM - No flow, frozen
		11-Mar-08	-	-	-	-	CNM - No flow, frozen
		25-Apr-08	7.80	669	1.80	10.77	
U/S	- Upstream of Ashfield Drain	25-Apr-08	6.67	334	1.50	12.19	
		13-May-08	8.00	658	11.3	13.83	
U/S		13-May-08	8.41	649	11.6	7.67	
		06-Jun-08	7.96	679	16.0	156.3	
U/S		06-Jun-08	7.37	752	15.9	5.14	
		11-Jul-08	-	-	-	-	CNM - No flow
U/S		11-Jul-08	-	-	-	-	CNM - No flow
		12-Aug-08	7.25	209	17.8	320.2	
U/S		12-Aug-08	7.62	359	18.0	272.0	
		02-Sep-08	7.53	676	15.0	30.29	
U/S		02-Sep-08	7.60	668	14.8	19.24	
		07-Oct-08	7.89	1067	13.6	14.14	
U/S		07-Oct-08	7.74	992	13.6	3.14	
		07-Nov-08	8.30	987	0.0	55.50	
U/S		07-Nov-08	8.25	901	-0.8	2.68	
		18-Dec-08	-	-	-	-	CNM - Frozen
U/S		18-Dec-08	-	-	-	-	CNM - Frozen
S-28	Floodway Channel - PTH #44 Weir	28-Jan-08	7.60	1626	-1.0	19.95	
		25-Feb-08	6.59	1187	-1.0	8.93	
		11-Mar-08	8.00	900	2.9	14.02	
		25-Apr-08	7.42	524	2.40	58.91	
		13-May-08	8.17	742	8.6	1510	
		06-Jun-08	8.08	595	13.0	734.3	
		11-Jul-08	8.30	321	22.3	29.13	
		12-Aug-08	7.30	665	17.2	176.4	
		02-Sep-08	7.58	978	14.3	40.73	
		07-Oct-08	7.75	713	10.9	73.50	
		07-Nov-08	8.48	1060	0.6	59.83	
		18-Dec-08	7.80	130.9	0.1	38.70	
S-30	Red River - Downstream of Outlet (500 m)	28-Jan-08	7.27	1183	-0.3	11.72	
		25-Feb-08	6.35	1243	-0.3	8.20	
		11-Mar-08	7.72	900	4.4	10.65	
		25-Apr-08	7.74	566	3.80	166.5	
		13-May-08	8.10	705	9.3	92.96	
		06-Jun-08	8.15	850	15.2	49.17	
		11-Jul-08	8.50	380	22.6	83.87	
					22.6		
		12-Aug-08	8.01	769	20.1	42.82	

Sample No.	Location	Date	pH (units)	E.C. (μS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
S-30	Red River - Downstream of Outlet (500 m)	02-Sep-08	7.73	639	16.8	71.47	
		07-Oct-08	7.88	721	12.0	53.42	
		07-Nov-08	8.12	914	3.2	142.7	
		18-Dec-08	7.80	1088	0.1	436.7	
S-31	Red River - Downstream of Outlet (1000 m)	28-Jan-08	6.93	1197	-0.1	10.57	
		25-Feb-08	6.30	1236	-0.1	7.80	
		11-Mar-08	7.77	900	7.8	10.09	
		25-Apr-08	7.84	664	4.50	231.1	
		13-May-08	8.00	706	9.5	91.02	
		06-Jun-08	8.09	861	15.3	45.69	
		11-Jul-08	8.50	417	22.1	52.52	
		12-Aug-08	7.81	389	21.1	48.10	
		02-Sep-08	7.66	634	17.5	71.61	
		07-Oct-08	7.74	707	11.9	54.65	
		07-Nov-08	7.86	889	3.5	150.3	
		18-Dec-08	7.90	1226	0.2	230.6	
S-32	Red River - Downstream of Outlet (2000 m)	28-Jan-08	6.78	1230	-0.6	10.62	
		25-Feb-08	6.35	1217	3.0	8.19	
		11-Mar-08	7.73	900	7.7	8.91	
		25-Apr-08	7.40	762	5.50	268.6	
		13-May-08	7.93	762	9.5	95.73	
		06-Jun-08	8.05	869	15.6	44.48	
		11-Jul-08	8.40	392	22.1	46.02	
		12-Aug-08	7.94	778	21.0	48.95	
		02-Sep-08	7.60	637	17.6	69.86	
		07-Oct-08	7.58	691	12.4	53.19	
		07-Nov-08	7.37	911	3.4	154.1	
		18-Dec-08	8.00	1272	0.8	609.5	
S-33	Red River - Downstream of Outlet (3000 m)	28-Jan-08	6.66	1220	1.2	10.82	
		25-Feb-08	6.44	1220	0.2	11.49	
		11-Mar-08	8.02	1000	1.5	10.86	
		25-Apr-08	7.23	674	7.40	265.8	
		13-May-08	8.01	700	9.5	86.28	
		06-Jun-08	7.75	844	10.3	42.46	
		11-Jul-08	8.30	837	21.6	54.37	
		12-Aug-08	7.93	782	21.1	46.27	
		02-Sep-08	7.61	633	17.7	71.76	
		07-Oct-08	6.96	721	12.1	46.97	
		07-Nov-08	7.15	909	3.4	141.1	

Sample No.	Location	Date	pH (units)	E.C. (μS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
S-33	Red River - Downstream of Outlet (3000 m)	18-Dec-08	7.80	1263	2.0	150.3	
S-34	Red River - Upstream of Outlet	28-Jan-08	7.40	1212	0.0	9.34	
		25-Feb-08	6.21	1236	-0.5	8.21	
		11-Mar-08	7.82	900	3.3	10.19	
		25-Apr-08	7.65	712	4.60	297.6	
		13-May-08	8.04	696	10.2	99.68	
		06-Jun-08	8.21	888	15.6	87.66	
		11-Jul-08	8.50	410	23.1	102.9	
		12-Aug-08	8.03	772	19.8	42.00	
		02-Sep-08	7.86	631	16.8	68.66	
		07-Oct-08	7.98	698	12.0	46.39	
		07-Nov-08	8.33	904	3.8	142.4	
		18-Dec-08	8.10	640.0	0.1	406.1	
S-35	West Dyke - Downstream of Manness Drain	30-Jan-08	-	-	-	-	CNM - No flow
		25-Feb-08	-	-	•	-	CNM - No flow
		12-Mar-08	-	-	•	-	CNM - No flow
		25-Apr-08	8.40	616	2.20	12.50	
		13-May-08	-	-	•	-	CNM - No flow
		06-Jun-08	-	-	-	-	CNM - No flow
		11-Jul-08	-	-	-	-	CNM - No flow
		12-Aug-08	-	-	-	-	CNM - No flow
		02-Sep-08	-	-	-	-	CNM - No flow
		07-Oct-08	6.39	1377	10.4	6.92	
		07-Nov-08	7.40	412	1.0	353.6	
		18-Dec-08	-	-	-	-	CNM - Frozen
S-36	West Dyke - Downstream of Domain Drain	30-Jan-08	-	-	-	-	CNM - No flow
		25-Feb-08		-	•	-	CNM - No flow
		12-Mar-08	-	-	-	-	CNM - No flow
		25-Apr-08	8.20	388	0.90	42.66	
		13-May-08	6.91	931	6.0	17.30	
		06-Jun-08	7.60	1794	13.6	36.75	
		11-Jul-08	-	-	-	-	CNM - No flow
		12-Aug-08	-	-	-	-	CNM - No flow
		02-Sep-08	-	-	-	-	CNM - No flow
		07-Oct-08	-	-	-	-	CNM - No flow
		07-Nov-08	7.70	205	1.3	147.5	
		18-Dec-08	-	-	-	-	CNM - Frozen

Sample No.	Location	Date	pH (units)	E.C. (µS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
Level I		-	-		-		
CON D/S	Floodway Channel - Station 50+500	13-May-08	8.20	732	8.2	15.74	
		26-May-08	8.40	777	11.8	31.40	
		06-Jun-08	7.94	539	12.8	>1100	
		09-Jun-08	7.43	664	15.4	73.98	
		12-Jun-08	7.64	-	16.2	23.75	
		28-Jun-08	7.69	808	20.8	173.5	
	- Station 50+900	11-Jul-08	8.30	324	22.3	44.88	
		29-Jul-08	7.65	598	19.8	100.7	
		12-Aug-08	7.64	830	17.2	41.93	
		22-Aug-08	8.20	811	21.4	67.15	
		02-Sep-08	7.59	917	14.5	55.44	
		23-Sep-08	8.00	657	17.0	177.0	
		07-Oct-08	7.88	705	11.6	79.05	
		13-Oct-08	7.69	750	8.8	64.99	
		07-Nov-08	8.39	959	1.3	52.68	
CON U/S	Floodway Channel - Station 11+000	13-May-08	-	-	-	-	CNM - No Flow
		26-May-08	8.10	493	11.8	3.81	
		06-Jun-08	8.30	424	15.4	93.15	
		09-Jun-08	7.42	449	16.7	5.29	
		12-Jun-08	7.04	543	13.2	12.01	
		28-Jun-08	7.88	532	19.9	12.18	
		11-Jul-08	8.16	399	21.6	1.77	
		29-Jul-08	8.61	354	20.1	7.02	
		12-Aug-08	-	-	-	-	CNM - No flow
		22-Aug-08	-	-	-	-	CNM - No flow
		02-Sep-08	-	-	-	-	CNM - No flow
		23-Sep-08	8.10	455	17.0	114.3	
		07-Oct-08	6.34	589	10.9	1.60	
		13-Oct-08	6.77	451	7.9	10.89	
		07-Nov-08	8.10	451	2.2	10.13	
S-31	Red River - Downstream of Outlet (1000 m)	13-May-08	8.00	706	9.5	91.02	
		26-May-08	8.20	787	14.3	59.29	
		06-Jun-08	8.09	861	15.3	45.69	
		09-Jun-08	7.58	718	15.7	52.40	
		12-Jun-08	7.60	662	14.8	67.97	
		28-Jun-08	7.75	814	20.9	130.1	
		11-Jul-08	8.50	417	22.1	52.52	
		29-Jul-08	7.97	772	22.0	51.40	
		12-Aug-08	7.81	389	21.1	48.10	

Sample No.	Location	Date	pH (units)	E.C. (µS/cm)	Temp. (°C)	Turbidity (NTU)	Comments
S-31	Red River - Downstream of Outlet (1000 m)	22-Aug-08	8.30	720	23.5	65.23	
		02-Sep-08	7.66	634	17.5	71.61	
		23-Sep-08	8.10	473	17.3	159.6	
		07-Oct-08	7.74	707	11.9	54.65	
		13-Oct-08	6.72	764	10.6	39.81	
		07-Nov-08	7.86	889	3.5	150.3	
S-34		06-Jun-08	8.21	888	15.6	87.66	
		12-Jun-08	7.91	747	16.4	98.45	
		28-Jun-08	7.69	834	23.1	98.09	
		11-Jul-08	8.50	410	23.1	102.9	
		29-Jul-08	8.08	768	21.8	44.45	
		12-Aug-08	8.03	772	19.8	42.00	
		22-Aug-08	8.30	711	23.2	75.17	
		02-Sep-08	7.86	631	16.8	68.66	
		23-Sep-08	8.00	443	17.8	139.8	
		07-Oct-08	7.98	698	12.0	46.39	
		13-Oct-08	7.56	816	10.6	31.14	
		07-Nov-08	8.33	904	3.8	142.4	

Notes:

"-" = No Data

* = Equipment failure

E.C. = Electrical Conductivity

CNM = Could Not Monitor

															Parar	neter (2)														
Sample	Date	T 1 · · · ·		5.0	Allerlinite	Disarbarata	Cashanata		Lingda and	011.11		0.1.1.1.1	Ortho-	Ammonia	Unionized	Nitrate+								Titul	Table	TRO			lor	n
No. ⁽¹⁾		Turbidity (NTU)	pH (units)	E.C. (µS/cm)	Alkalinity as CaCO ₃	Bicarbonate as HCO ₃	Carbonate as CO ₃	Hydroxide as OH	Hardness as CaCO ₃	Chloride - Soluble	Fluoride - Soluble	Sulphate - Soluble	Phosphorus Soluble as P	(NH ₃) - Soluble	Ammonia (3)	Nitrite-N Soluble	Calcium	Magnesium	Potassium	Sodium	Iron	Manganese	D.O.C	Total Phosphorus	Total Dissolved Phosphorus	T.D.S. (Calc.)	T.S.S.	T.K.N. T	.O.C. Balar (%	
Detection L	imit	0.05	0.01	0.4	1	2	0.6	0.4	0.2	9	0.1	9	0.001	0.003	-	0.005	0.05	0.01	0.05	0.02	0.01	0.0002	1	0.001	0.001	5	5	0.2	1 -	
CCME ⁽⁴⁾																														
Freshwater	Aquatic Life	(5)	6.5-9.0	-	-	-	-	-	-	-	-	-	-	-	0.019	-	-	-	-	-	0.3	-	-	-	-	-	(6)	-		
Monthly																														
CON D/S	28-Jan-08	6.3	7.90	1260	362	442	<0.6	<0.4	572	57	0.4	250	0.013	0.050	0.000	0.101	100	78.1	6.82	66.4	0.09	0.0222	3	0.024	0.014	776	8	-	3 10	
	25-Feb-08 11-Mar-08	6 23	8.08 8.20	968 924	291 257	356 314	<0.6 <0.6	<0.4	447 502	35 74	0.4	173 205	0.010	0.012 0.042	0.000	0.027	76.5 72.8	62.2 77.9	5.23 7.11	49.5 75.7	0.19 0.44	0.0137	2	0.020	0.010 0.012	576 641	5 14	-	2 10 4.0 11	
	25-Apr-08	55	8.31	469	176	213	1.2	<0.4	215	13	0.2	57	0.110	0.053	0.001	0.031	45.1	24.8	5.72		0.34	0.0269	9	0.156	0.087	266	42		9 99	
	13-May-08 6-Jun-08	13 1700	8.41 8.33	719 465	239 165	280 198	5.6 2.0	<0.4	314 671	20 16	0.2	120 61	0.011 0.439	0.058	0.002	0.012	59.5 171	40.2 59.3	4.73 4.10	27.3 17.4	0.09 2.32	0.0298	9 9	0.047 0.735	0.018	415 428	<5 1700		9.0 96. 10 28	
	11-Jul-08	40	8.32	665	237	284	2.2	<0.4	313	36	0.3	80	0.192	0.069	0.007	0.385	60.8	39.2	5.05	33.9	0.30	0.0312	11	0.245	0.203	399	44	0.9	12 10	6
	12-Aug-08 2-Sep-08	32 180	8.29 8.29	813 871	285 214	348 261	<0.6 <0.6	<0.4 <0.4	365 472	34 41	0.3	131 216	0.115	0.069 0.105	0.004	0.503	61.0 87.3	51.7 61.7	4.92 6.02	32.7 47.3	0.20	0.0212	7	0.119 0.105	0.090	489 588	28 300	0.6	8 93. 8.0 11	
	7-Oct-08	75	8.09	626	208	254	<0.6	<0.4	285	38	0.4	113	0.000	0.166	0.005	0.224	57.4	34.4	9.25	30.5	0.65	0.0485	13	0.318	0.244	410	500 57		13 -	<u> </u>
	7-Nov-08	45	8.50	910	263	302	9.4	<0.4	-	55	0.4	157	0.062	0.176	0.005	0.219	70.0	50.1	6.08	49.0	0.16	0.0214	12	0.124	0.072	-	36		12 97.	
CON U/S	18-Dec-08 25-Apr-08	8 1.9	8.27 8.49	1250 510	376 146	458 165	<0.6 6.2	<0.4	567 202	61 18	0.3	265 75	0.125	0.331 0.018	0.005	0.779	97.8 48.8	78.3 19.5	8.21 7.34	68.9 16.8	0.08	0.0208	9 11	0.148	0.137	808 273	<5 <5	0.9	9 98. 12 99.	
	6-Jun-08	85	8.27	404	178	217	<0.6	<0.4	213	12	0.3	28	0.119	0.062	0.003	0.264	49.5	21.6	5.38	10.1	0.34	0.0376	10	0.171	0.100	235	69	0.7	11 10	07
	11-Jul-08 7-Oct-08	1.5 1.6	8.84 8.35	401 439	147 152	145 180	17.1 2.6	<0.4 <0.4	188 186	19 17	0.2	44 62	0.079 0.129	<0.003 <0.003	0.001	0.017	41.4 44.2	20.5 18.5	5.33 5.76	15.4 15.1	0.01	0.0065	11	0.101 0.145	0.092 0.139	234 254	<5 <5		11 10 7 93.	
	7-Nov-08	10	8.39	447	127	150	2.6	<0.4	180	17	0.3	83	0.125	0.008	0.000	0.110	46.2	15.6	6.07	13.5	0.02	0.0087	10	0.143	0.162	258	5		10 90.	
VEG D/S	28-Jan-08	6.3	7.90	1260	362	442	<0.6	<0.4	572	57	0.4	250	0.013	0.050	0.000	0.101	100	78.1	6.82		0.09	0.0222	3	0.024	0.014	776	8	-	3 10	
	25-Feb-08 11-Mar-08	6 23	8.08 8.20	968 924	291 257	356 314	<0.6 <0.6	<0.4 <0.4	447 502	35 74	0.4	173 205	0.010	0.012 0.042	0.000	0.027	76.5 72.8	62.2 77.9	5.23 7.11	49.5 75.7	0.19 0.44	0.0137	2	0.020	0.010 0.012	576 641	5 14	-	2 10 4.0 11	
	25-Apr-08	55	8.31	469	176	213	1.2	<0.4	215	13	0.2	57	0.110	0.053	0.001	0.031	45.1	24.8	5.72	14.0	0.34	0.0269	9	0.156	0.087	266	42	0.9	9 99	9
	13-May-08 6-Jun-08	13 1700	8.41 8.33	719 465	239 165	280 198	5.6 2.0	<0.4	314 671	20 16	0.2	120 61	0.011 0.439	0.058	0.002	0.012	59.5 171	40.2 59.3	4.73 4.10	27.3 17.4	0.09 2.32	0.0298	9 9	0.047	0.018	415 428	<5 1700		9.0 96. 10 28	
	11-Jul-08	40	8.32	665	237	284	2.2	<0.4	313	36	0.3	80	0.192	0.069	0.007	0.385	60.8	39.2	5.05	33.9	0.30	0.0312	11	0.245	0.203	399	44		12 10	
	12-Aug-08 2-Sep-08	32 180	8.29 8.29	813 871	285 214	348 261	<0.6 <0.6	<0.4 <0.4	365 472	34 41	0.3	131 216	0.115	0.069 0.105	0.004	0.503	61.0 87.3	51.7 61.7	4.92 6.02	32.7 47.3	0.20	0.0212	7	0.119 0.105	0.090	489 588	28 300		8 93. 8.0 11	
	7-Oct-08	75	8.09	626	208	254	<0.6	<0.4	285	38	0.4	113	0.299	0.166	0.005	0.224	57.4	34.4	9.25	30.5	0.65	0.0485	13	0.318	0.244	410	57		13 -	
	7-Nov-08	45	8.50	910	263	302	9.4	<0.4	-	55	0.4	157	0.062	0.176	0.005	0.219	70.0	50.1	6.08	49.0	0.16	0.0214	12	0.124	0.072	-	36		12 97.	
VEG U/S	18-Dec-08 25-Apr-08	8 1.9	8.27 8.49	1250 510	376 146	458 165	<0.6 6.2	<0.4	567 202	61 18	0.3	265 75	0.125	0.331 0.018	0.005	0.779	97.8 48.8	78.3 19.5	8.21 7.34	68.9 16.8	0.08	0.0208	9 11	0.148	0.137 0.178	808 273	<5 <5	0.9	9 98. 12 99.	
	6-Jun-08	85	8.27	404	178	217	<0.6	<0.4	213	12	0.3	28	0.119	0.062	0.003	0.264	49.5	21.6	5.38	10.1	0.34	0.0376	10	0.171	0.100	235	69	0.7	11 10	7
	11-Jul-08 7-Oct-08	1.5 1.6	8.84 8.35	401 439	147 152	145 180	17.1 2.6	<0.4 <0.4	188 186	19 17	0.2	44 62	0.079	<0.003 <0.003	0.001	0.017	41.4 44.2	20.5 18.5	5.33 5.76	15.4 15.1	0.01	0.0065	11 7	0.101 0.145	0.092	234 254	<5 <5		11 10 7 93.	
	7-Nov-08	1.0	8.39	447	127	150	2.6	<0.4	180	17	0.3	83	0.146	0.008	0.000	0.110	46.2	15.6	6.07	13.5	0.02	0.0087	10	0.143	0.162	258	5		10 90.	
S-05	6-Jun-08	50	8.29	448	220	269	<0.6	<0.4	235	13	0.2	9	0.063	0.039	0.002	0.034	59.8	20.8	2.57	10.0	0.36	0.0649	13	0.115	0.058	248	54		13 10	
U/S	6-Jun-08 11-Jul-08	50 35	8.32 8.35	442 468	229 253	276 302	1.8 2.9	<0.4	249 265	12 13	0.3	10 14	0.069 0.090	0.032 0.057	0.002	0.041	63.1 67.9	22.2 23.3	2.40 1.72	7.93 7.82	0.37 0.35	0.0507	14 16	0.144	0.063 0.094	255 279	50 31		14 10 17 99.	
U/S	11-Jul-08	39	8.39	470	255	301	4.7	<0.4	266	12	0.2	14	0.087	0.060	0.006	0.083	68.2	23.4	1.78	7.63	0.57	0.0513	17	0.139	0.092	280	36		17 99.	
U/S	7-Oct-08 7-Oct-08	23 22	8.40 8.41	478 480	244 245	288 289	4.7 5.2	<0.4 <0.4	234 233	17 16	0.3	21 16	0.148	0.036	0.002	0.011	57.5 57.3	21.9 21.9	4.47 4.34	9.93 9.66	0.32	0.0400	16 18	0.182	0.138	278 273	19 16		16 89. 18 90.	
	7-Nov-08	32	8.46	598	210	242	6.8	<0.4	-	32	0.2	71	0.105	0.020	0.001	0.157	53.5	29.7	5.01	21.7	0.26	0.0109	15	0.158	0.105	-	20	0.7	16 93.	.8
U/S S-06	7-Nov-08 25-Apr-08	30 15	8.48 8.41	613 458	225 150	261 175	6.9 3.8	<0.4	260 185	30 13	0.3	58 68	0.094 0.058	0.017	0.001	0.144	56.6 36.3	28.7 23.0	5.11 6.84	19.9 13.0	0.28	0.0268	16 11	0.155	0.103	334 250	23 10	0.7	16 93. 13 92.	
0.00	13-May-08	13	8.19	763	211	258	<0.6	<0.4	341	21	0.2	171	0.030	0.026	0.001	0.005	63.4	44.4	8.84	27.1		0.0249	9	0.075	0.052	463	13	9.0		
U/S	13-May-08	17	8.42	573	151	177	3.8	<0.4	244	20	0.2	107	0.012	0.040	0.002	0.010	52.3	27.6	6.74		0.24	0.0377	13	0.077	0.017	322	22	1.0		
U/S	6-Jun-08 6-Jun-08	400 500	8.06 8.04	475 492	78 87	95 107	<0.6 <0.6	<0.4 <0.4	244 258	14 17	0.4	166 155	0.297 0.281	0.074 0.057	0.002	1.560 1.230	50.2 53.3	28.9 30.4	6.05 6.01	16.3 16.8		0.1000	11 11	0.763 0.444	0.617 0.114	335 336	350 540	1.6 1.5		
	11-Jul-08	15	8.78	745	247	261	19.6	<0.4	330	62	0.3	85	0.009	0.015	0.004	<0.005	42.1	54.7	6.52	46.4		0.0164	18	0.059	0.038	445	11		19 10	
U/S	11-Jul-08 12-Aug-08	6.9 32	8.60 8.52	395 743	173 134	193 151	8.6 6.3	<0.4	186 264	20 63	0.2	13 163	0.005	0.032 0.044	0.005	0.049	33.3 36.6	24.9 42.0	3.88 6.14	13.8 43.9	0.11 0.53	0.0125	17 17	0.061 0.071	0.038	213 435	5 29	1.3 1.1		
U/S	12-Aug-08	32	8.27	412	121	148	<0.6	<0.4	179	30	0.2	50	0.031	0.081	0.005	0.049	31.5	24.4	4.34	15.0	0.30	0.0419	12	0.062	0.025	228	32	1.0	12 10	0
U/S	7-Oct-08 7-Oct-08	9.0 9.5	8.38 8.33	614 558	226 218	267 260	4.0 2.7	<0.4 <0.4	271 262	32 31	0.3	66 39	0.102	0.010 0.009	0.001	0.023	52.7 60.9	33.8 26.7	8.11 6.80		0.19 0.20	0.0353	14 13	0.138 0.175	0.121 0.154	350 309	<5 <5	0.9 0.7	15 96. 14 98.	
0/3	7-0ct-08 7-Nov-08	9.5 29	8.45	556 686	183	260	5.4	<0.4	262	25	0.3	- 39 - 141	0.144	0.009	0.000	0.073	52.7	35.5	6.00			0.0505	13	0.175	0.154	309 394	<5 21		14 96. 13 91.	
U/S	7-Nov-08	21	8.51	528	193	221	7.5	<0.4	238	27	0.3	48	0.047	0.013	0.000	0.013	56.7	23.4	3.72		0.22	0.0108	14	0.088	0.060	285	16		14 93.	_
S-07 U/S	25-Apr-08 25-Apr-08	7.9 8.1	8.46 8.43	541 496	176 176	205 205	4.9 4.8	<0.4	220 209	14 10	0.3	82 69	0.118 0.120	0.022	0.001	0.013	39.6 37.3	29.5 28.2	7.19 7.11	18.2 15.1		0.0171	12 13	0.156 0.161	0.142 0.148	297 273	<5 6		18 95. 16 95.	
	13-May-08	14	8.32	1690	203	245	1.6	<0.4	587	254	0.3	340	0.013	0.024	0.001	0.936	88.4	89.1	8.52	148	0.30	0.0393	14	0.056	0.029	1050	14	0.8	14 10	0
U/S	13-May-08	13	8.35	877	272	325	3.6	<0.4	406	19	0.3	200	0.028	0.023	0.001	0.008	64.8	59.2	7.12	38.2	0.32	0.0608	11	0.071	0.047	551	9	0.9	12 97.	9

															Param	neter ⁽²⁾														
Sample No. ⁽¹⁾	Date	Turbidity (NTU)	pH (units)	E.C. (µS/cm)		Bicarbonate as HCO ₃	Carbonate as CO ₃	Hydroxide as OH	Hardness as CaCO ₃	Chloride - Soluble	Fluoride - Soluble	Sulphate - Soluble	Ortho- Phosphorus Soluble as P	Ammonia (NH ₃) - Soluble	Unionized Ammonia	Nitrate+ Nitrite-N Soluble	Calcium	Magnesium	Potassium	Sodium	Iron	Manganese	D.O.C	Total Phosphorus	Total Dissolved Phosphorus	T.D.S. (Calc.)	T.S.S.	T.K.N.	T.O.C.	lon Balance (%)
S-07 U/S	6-Jun-08 6-Jun-08	260 240	8.06 7.98	722 630	143 113	175 138	<0.6 <0.6	<0.4 <0.4	390 282	18 14	0.3 0.4	187 157	0.263 0.368	0.174 0.211	0.006 0.006	16.30 18.60	59.9 41.1	58.5 43.7	6.92 6.32	32.1 22.8	0.64 0.40	0.1690 0.1240	13 14	0.433 0.540	0.187 0.310	520 435	300 220	2.4 2.8	14 15	111 93.5
U/S	11-Jul-08 11-Jul-08	9.2 13	9.01 8.85	604 621	227 234	212 241	32.3 21.8	<0.4 <0.4	310 315	18 20	0.3	117 108	0.114 0.146	0.010	0.004	<0.005 <0.005	50.2 50.6	44.9 45.7	7.18 7.45	26.7 27.6	0.17 0.23	0.0144 0.0254	16 16	0.153	0.144 0.172	400 400	<5 10	1.3 1.3	17 17	100 102
U/S	12-Aug-08 12-Aug-08	34 35	8.23 8.59	1140 694	86 179	104 199	<0.6 9.9	<0.4	430 284	58 24	0.4	435 169	0.043 0.055	0.012	0.001	0.480	54.1 33.1	71.6 48.8	5.79 7.49	77.0 42.8	0.34	0.0401	11 18	0.067	0.013 0.050	756 434	39 35	0.9	11 18	97.1 98.8
U/S	2-Sep-08 2-Sep-08	19 28	8.36 8.41	912 1110	107 217	125 254	2.5 5.4	<0.4 <0.4	356 461	54 76	0.4	293 293	0.009	0.029	0.002	0.100	44.7 50.7	59.5 81.2	5.66 9.47	61.5 74.5	0.24 0.38	0.0334	9 15	0.053	0.011 0.039	583 715	20 43	0.7	10 16	102 101
U/S	7-Oct-08 7-Oct-08	140 21	8.43 8.44	789 760	219 217	256 253	5.7 5.8	<0.4	372 337	32 27	0.3	199 188	0.336	0.034	0.002	0.039	58.9 53.1	54.5 49.7	11.0 11.0	34.5 32.8	1.27 0.33	0.1270	14 14	0.382	0.201 0.228	521 493	220 15	1.2 0.9	14 14	97.4 93.5
U/S	7-Nov-08 7-Nov-08	20 18	8.47 8.44	1170 1240	231 275	268 321	7.1 7.1	<0.4 <0.4	484 515	41 36	0.4 0.3	336 360	0.044 0.076	0.017 0.027	0.001 0.001	0.186 0.236	64.9 65.2	78.2 85.7	7.63 8.18	56.2 53.4	0.17 0.17	0.0317 0.0508	12 17	0.073 0.105	0.052 0.083	724 775	18 21	0.6 0.7	14 17	96.1 91.4
S-09 U/S	25-Apr-08 25-Apr-08	28 39	8.56 8.53	440 441	171 174	192 198	8.0 7.2	<0.4 <0.4	197 194	12 12	0.2 0.2	43 40	0.043 0.050	0.027 0.028	0.001 0.001	0.008 0.010	40.0 40.4	23.7 22.5	5.94 5.53	12.6 11.7	0.28 0.31	0.0186 0.0222	14 11	0.118 0.119	0.059 0.061	240 237	23 36	1.0 1.0	15 16	99.8 96.8
U/S	13-May-08 13-May-08	13 13	8.50 8.42	583 780	230 235	264 275	8.4 5.6	<0.4 <0.4	272 327	17 48	0.3	69 108	0.008	0.029	0.002	<0.005 0.007	54.4 59.9	33.1 43.2	4.65 5.85	17.3 35.2	0.29 0.32	0.0285	10 12	0.046	0.017 0.037	334 441	14 13	0.7 0.7	12 13	96.5 99
U/S	6-Jun-08 6-Jun-08	16 35	8.31 8.05	749 659	223 167	268 203	1.9 <0.6	<0.4 <0.4	351 229	19 55	0.3	171 80	0.020	0.057	0.004	0.100	57.8 38.9	50.2 32.1	5.27 6.44	33.2 37.2	0.17 0.35	0.0745 0.0683	14 15	0.067	0.029 0.090	471 352	15 28	1.0 1.0	15 15	100 96.4
U/S	11-Jul-08 11-Jul-08	20 18	9.22 9.26	1590 1630	282 292	234 234	54.1 59.9	<0.4 <0.4	441 457	294 295	0.4	181 185	0.346	0.018	0.008	0.032 <0.005	58.6 60.7	71.6 74.3	8.49 8.33	201 207	0.31 0.32	0.0250 0.0269	17 17	0.400	0.382	985 1000	17 15	1.5 1.5	19 19	100 102
U/S	12-Aug-08 12-Aug-08	22 28	8.93 8.26	1850 1540	219 163	213 199	26.7 <0.6	<0.4	427 523	391 229	0.3	204 342	0.019 0.128	0.427	0.114 0.003	0.023	40.4	79.3 84.2	8.88 8.18	240 136	0.18 0.54	0.1360	19 17	0.204	0.027	1090 968	24 28	2.6 1.3	20 17	97.6 98.4
U/S	2-Sep-08 2-Sep-08	45 27	8.49 8.32	1010 531	191 131	218 156	7.1	<0.4	345 188	101 43	0.4	209 82	0.054	0.050	0.004	0.093	46.5 30.8	55.7 27.0	7.35	87.1 34.8	0.40	0.1330	13 10	0.117	0.050	621 302	49 21	1.4 0.7	13 10	98.6 97.6
U/S	7-Oct-08 7-Oct-08	26 14	8.45 8.46	819 735	228 207	266 240	6.1 6.1	<0.4	300 253	63 64	0.4	126 90	0.413	0.015	0.001	0.023	50.6 44.2	42.2 34.8	10.9 9.44	54.8 43.4	0.41 0.24	0.0804	16 17	0.469	0.405	485 410	20 8	1.2 0.9	16 17	96.4 91.9
U/S	7-Nov-08 7-Nov-08	30 25	9.06 9.18	1980 2220	305 320	275 277	47.9 55.4	<0.4	477 478	312 427	0.4	274 253	0.346	0.029	0.003	0.009	46.7 40.1	87.7 91.9	11.5 12.7	216 270	0.13	0.0583	22 22	0.615	0.485	1130 1290	62 72	3.6 3.8	30 31	93.2 91.2
S-10 U/S	25-Apr-08 25-Apr-08	5.2 0.95	8.48 8.39	889 577	185 183	213 215	6.3 3.7	<0.4	346 236	67 20	0.3	173 81	0.081	0.017	0.001	0.005	51.3 39.8	53.0 33.2	8.01 8.38	45.9 20.2	0.10	0.0069 0.0017	13 13	0.119	0.108	509 313	<5 <5	0.8	17 17	99.1 98.1
U/S	13-May-08 13-May-08	8.1 4.4	8.40 8.14	2420 1410	289 294	339 358	6.6 <0.6	<0.4	1070 591	230 85	0.2	884 359	0.023	0.032	0.002	0.015	139 95.2	175 85.7	11.7 11.6	150 62.3	0.34	0.0406	15 13	0.074	0.042 0.195	1760 875	7 <5	1.0 1.0	16 14	91.8 93.9
U/S	6-Jun-08 6-Jun-08	390 280	7.94	639 410	110 98	135 120	<0.6 <0.6	<0.4	319 172	25 16	0.3	177 96	0.316	0.104	0.003	3.040	51.9 25.7	46.0 26.2	6.58 8.88	33.9 18.1	0.68	0.1150	14 17	0.597	0.261 0.585	420 261	490 100	2.0 2.3	15 20	117 96.6
U/S	11-Jul-08 11-Jul-08	2.9	8.82 8.25	1070 881	273 334	281 407	25.7 <0.6	<0.4	577 425	29 49	0.6	357 105	0.009	0.005	0.001	<0.005	59.3 68.7	104 61.5	9.14 9.63	54.9 47.2	0.13	0.0060	18 19	0.058	0.040	777 542	<5 <5	1.4 1.5	20 19	103 105
U/S	12-Aug-08 12-Aug-08	30 6.6	8.29 8.27	2800 987	116 360	142 440	<0.6 <0.6	<0.4	1510 451	86 68	0.4	1670 122	0.039	0.018	0.001	0.363	153 67.5	274 68.6	7.12 9.16	170 60.4	0.44	0.0787	22 24	0.055	0.034	2430 615	38 14	1.3 1.8	22 24	95.4 101
U/S	2-Sep-08 7-Oct-08 7-Oct-08	13 4.6 3.5	8.47 8.52 8.36	948 1220 802	178 295 244	205 337 290	6.2 11.4 3.6	<0.4 <0.4 <0.4	360 525 374	82 89 29	0.3 0.4 0.3	229 259 185	0.103 0.209 0.462	0.036 0.011 0.007	0.003 0.001 0.000	0.008 0.126 0.014	45.4 70.2 56.9	59.9 84.9 56.3	7.94 10.9 12.4	67.5 72.1 32.3	0.20 0.15 0.17	0.0214 0.0145 0.0083	17 18 15	0.160 0.257 0.488	0.121 0.230 0.491	599 763 518	19 <5 <5	1.3 0.9 1.0	18 19 16	96.9 101 96.2
	7-Nov-08	18	8.47 8.46	1340 1270	244 265 285	306 330	8.4 8.8	<0.4 <0.4 <0.4	549 516	78 90	0.3	345 273	0.462	0.011	0.000	0.098	71.2 68.0	90.1 84.1	8.81 12.1	62.8 52.0	0.17	0.0205	16 18	0.488	0.491	815 751	17 9	0.8	16	90.2 94.7 92.4
U/S S-11	7-Nov-08 6-Jun-08	6.1 24	7.87	825	67	82	<0.6	<0.4	353	11	0.3	378	0.033	0.009	0.000	<0.005 0.971	71.0	42.8	8.42	31.1	0.16	0.0178	12	0.098	0.051	587	28	0.9	18 12	92.4 89.8 97
	11-Jul-08 12-Aug-08	1.5 10	7.70	675 659	278 80	339 97	<0.6 <0.6	<0.4	265 270	46 <9	0.2	17 251 91	0.060	0.008	0.000	<0.005	54.9 56.5	31.2 31.4	3.57 7.06	36.9 27.1	0.20	0.0046	18 14	0.106	0.097	356 425	<5 6 8	1 1	19 15	97.8
	2-Sep-08 7-Oct-08	16 2.8	8.17 8.09	498 676	156 197	190 241	<0.6 <0.6	<0.4	216 253	22 44	0.3	98	0.107	0.034	0.001	0.037	48.1 50.0	23.3 31.0	7.52	18.4 35.0	0.18	0.0080	13 12	0.136	0.101	304 -	<5		13 12	94
S-12	7-Nov-08 13-May-08	65 29	8.36 8.19	870 1920	198 237	235 289	3.1	<0.4	497	56 345	0.3	188 258	0.025	0.020	0.000	0.019	60.7 76.1	47.1	7.56	1	0.29		15 13	0.076	0.033	- 1120	57 13	0.7		94.3 95.1
	6-Jun-08 11-Jul-08	100 65	7.98 8.12	671 2690	96 163	118 199	<0.6 <0.6	<0.4	194 388	109 721	0.1	65 159	0.130	0.140	0.004	0.938	35.7 63.9	25.5 55.6	8.67 20.2	72.2 465	0.58	0.0550	10 10 7	0.239	0.109	379 1590	170 54	1.0		113 106
	12-Aug-08 2-Sep-08	65 31	8.08 8.22	451 526	66 99	81 121	<0.6 <0.6	<0.4	139 161	61 63	<0.1	58 60	0.084 0.038	0.081	0.003		25.8 26.3	18.1 23.3	4.88 4.73	44.6			7 7	0.113	0.058	251 283	65 31	0.9		109 105
0.40	7-Oct-08 7-Nov-08	40 150	8.39 8.33	747 2940	147 139	172 166	3.4 1.8	<0.4	218 302	105 723	0.2	79 141	0.133	<0.003 0.144	0.000	0.269	36.2 50.4	31.1 42.7	5.65 20.1	62.2 454	0.66	0.0598	8	0.241	0.109	408 1520	33 98	1.5 1.1	12	95.3 101
S-13	30-Jan-08 25-Apr-08	160 36	7.59 8.43	2840 407	1550 147	1890 171	<0.6 4.0	<0.4	1810 168	80 13	0.5	281 43	0.037	0.547	0.002	0.029	396 37.4	199 18.2	17.4 6.46	99.0 11.8	0.33	0.0243	66 11	0.268	0.069	2000 218	290 34	4.4 0.8	11	105 95.8
	13-May-08 6-Jun-08	33 75	8.47 8.12	569 444	191 136	221 165	6.0 <0.6	<0.4	256 229	18 10	0.2	86 94	0.027	0.076	0.004	0.022	56.8 58.5	27.8 20.1	6.22 6.18	18.5 10.6		0.0460	8	0.075	0.038	328 282	21 67	0.7	13	99.3 104
	11-Jul-08 12-Aug-08	29 32	8.41 8.32	462 563	248 130	292 155	5.1 2.0	<0.4	271 248	12 22	0.2	14 143	0.090	0.065	0.007	0.094	69.2 59.0	23.8 24.3	1.92 5.24	19.9		0.0761	19 14	0.157	0.103	279 352	22 28	1.1 0.9	14	104 95.5
	2-Sep-08 7-Oct-08	33 19	8.32 8.42	622 515	146 210	173 246	2.4 5.0	<0.4	254 232	36 24	0.4	150 41	0.065	0.052	0.003	0.024	58.1 51.7	26.5 25.0	6.42 6.79	31.6 16.2	0.30	0.0292	10 13	0.100	0.057	397 291	21 11	1 1	13	93.5 95.9
S-13	7-Nov-08 19-Dec-08	36 6.2	8.46 8.18	611 1570	191 637	221 778	5.8 <0.6	<0.4 <0.4	- 810	29 77	0.3 0.3	93 229	0.101 0.051	0.017 0.029	0.000	0.124 0.026	52.9 162	31.2 98.4	5.36 11.3	21.8 56.5	0.26 0.26	0.0218 0.0547	14 15	0.151 0.101	0.111 0.072	- 1020	26 9	0.7 16	14 1.1	95.4 96.1 T

															Parar	neter (2)													
Sample No. ⁽¹⁾	Date	Turbidity (NTU)	pH (units)	E.C. (µS/cm)	Alkalinity as CaCO ₃	Bicarbonate as HCO ₃	Carbonate as CO ₃	Hydroxide as OH	Hardness as CaCO ₃	Chloride - Soluble	Fluoride - Soluble	Sulphate - Soluble	Ortho- Phosphorus Soluble as P	Ammonia (NH ₃) - Soluble	Unionized Ammonia	Nitrate+ Nitrite-N Soluble	Calcium	Magnesium	Potassium	Sodium	Iron	Manganese	D.O.C	Total Phosphorus	Total Dissolved Phosphorus	T.D.S. (Calc.)	T.S.S.	T.K.N. T	T.O.C. Ion Balance (%)
S-14	30-Jan-08	24	8.06	1060	222	271	<0.6	<0.4	421	52	0.3	262	0.007	0.123	0.001	0.079	72.9	58.2	5.25	80.5	0.37	0.0923	6.3	0.041	0.011	664	71	0.6	6 106
	26-Feb-08	7.4	8.02	676	163	199	<0.6	<0.4	259	21	0.2	137	0.013	0.089	0.001	0.110	49.2	33.1	3.25	39.5	0.20	0.0548	6	0.023	0.008	381	<5	0.5	6 104
	12-Mar-08 25-Apr-08	- 230	8.20 8.39	1020 415	229 144	279 170	<0.6 3.1	<0.4 <0.4	409 197	53 15	0.3	240 85	0.003	0.015 0.118	0.000	0.005	70.0 43.8	57.0 21.4	4.86 6.35	77.7 14.6	0.54	0.1470 0.0757	5 10	0.080	<0.001 0.118	639 278	120 250		6.0 105 14 91.5
	13-May-08	290	8.42	666	201	236	4.8	<0.4	294	20	0.3	136	0.235	0.280	0.003	0.059	56.7	37.0	5.94	33.4	0.02	0.0737	8	0.320	0.014	409	260		8.0 100
	6-Jun-08	70	8.26	760	165	201	<0.6	<0.4	377	14	0.3	238	0.135	0.062	0.004	0.699	85.8	39.4	6.20	25.7	0.33	0.0724	13	0.152	0.075	511	84	0.9	13 101
	11-Jul-08	70	8.44	534	240	280	6.1	<0.4	282	20	0.3	37	0.111	0.103	0.012	0.108	63.6	29.9	4.04	18.7	0.48	0.0516	16	0.193	0.113	318	52		16 107
	12-Aug-08 2-Sep-08	28 50	8.63 8.59	598 746	222 211	244 234	13.1 11.6	<0.4 <0.4	274 307	22 46	0.2	93 135	0.042	0.058	0.008	0.019	54.9 60.3	33.2 38.1	3.14 4.99	27.9 47.7	0.25 0.32	0.0276	14 10	0.057	0.031	366 458	15 48		14 96.6 10 100
	7-Oct-08	30	8.43	548	205	241	4.9	<0.4	237	23	0.3	76	0.034	0.032	0.004	0.032	50.1	27.2	7.54	19.9	0.32	0.0007	15	0.090	0.237	328	24		15 91.1
	7-Nov-08	150	8.55	750	223	253	9.5	<0.4	332	28	0.4	140	0.039	0.111	0.004	0.069	69.0	38.8	5.03	27.6	0.48	0.0524	14	0.157	0.039	443	170	0.8	15 97.2
	19-Dec-08	6.7	8.17	1140	274	334	<0.6	<0.4	449	50	0.4	266	0.01	0.146	0.002	0.044	77.0	62.4	5.97	71.1	0.20	0.1330	8	0.048	0.031	697	<5		0.6 98.2
S-21	31-Jan-08	2.6	8.33 7.99	1020 877	263 245	314 299	3.1	<0.4	426 364	49	0.4	204 157	0.038	0.379 0.048	0.007	0.065	72.1 63.7	59.8 49.8	5.03 4.15	58.4 43	0.08	0.0303 0.0309	3	0.058	0.044 0.041	607 499	<5 <5		3 103 3 101
	26-Feb-08 12-Mar-08	6.1 -	8.21	914	245	300	<0.6 <0.6	<0.4 <0.4	376	33 50	0.4	185	0.043	0.048	0.000	0.043	61.8	53.9	4.13	43 57.1	0.10	0.0309	3	0.033	0.041	559	8		4.0 99.2
	25-Apr-08	60	8.23	1190	159	194	<0.6	<0.4	238	252	0.2	67	0.135	0.372	0.007	0.273	48.2	28.6	10.1	150	0.37	0.0540	10	0.237	0.128	652	73		10 98.5
	13-May-08	50	8.17	869	141	172	<0.6	<0.4	229	122	0.1	107	0.055	0.118	0.004	0.426	43.3	29.4	6.34	77.1	0.29	0.0527	8	0.123	0.056	471	25		8.0 95
	6-Jun-08	210	7.81 8.34	314	82	100	<0.6	<0.4	158	16	0.2	51	0.082	0.116	0.002	0.373	35.0	17.1	3.79	14.4	0.72	0.0869 0.0483	6	0.316	0.091	188	200		8 122
	11-Jul-08 12-Aug-08	45 65	7.83	748 423	244 79	291 97	3.0 <0.6	<0.4 <0.4	318 131	49 47	0.3	104 55	0.140 0.042	0.196 0.075	0.017	0.150	62.9 25.4	39.2 16.3	5.01 4.74	41.7 35.7	0.66	0.0483	13 6	0.206	0.143 0.019	449 232	39 60	1.2 0.7	13 98.4 7 105
	2-Sep-08	75	7.98	300	59	71	<0.6	<0.4	106	30	0.2	37	0.074	0.082	0.002	0.233	21.5	12.7	3.53	21.9	0.56	0.0573	4	0.172	0.046	163	78	0.9	5.0 113
	7-Oct-08	45	8.19	701	200	244	<0.6	<0.4	288	53	0.3	104	0.242	0.200	0.007	0.122	57.6	35.1	9.06	45.4	0.53	0.0614	13	0.274	0.208	425	42		13 -
	7-Nov-08	60	8.62	1200	231	253	14.1	<0.4	358	165	0.3	182	0.097	0.029	0.001	0.010	59.9	50.7	7.48	109	0.24	0.0352	14	0.210	0.114	712	54		15 92.5
S-22	19-Dec-08 25-Apr-08	4.0 3.9	8.21 8.42	1150 614	304 244	371 288	<0.6 4.8	<0.4	442 308	60 25	0.3	227 51	0.022	0.176	0.002	0.058	73.7 59.7	62.6 38.7	5.45 6.48	57.4 14.1	0.11	0.0334	4	0.045	0.031	669 341	<5 <5		0.4 91.6 10 104
U/S	25-Apr-08	0.6	8.39	708	283	336	4.3	<0.4	365	32	0.2	58	0.004	0.004	0.000	< 0.005	71.9	45.0	4.78	16.3	0.03	0.0040	11	0.007	0.038	398	<5		11 105
	13-May-08	1.6	8.57	921	293	327	14.7	<0.4	434	39	0.2	159	0.005	0.037	0.004	< 0.005	78.8	57.7	6.68	23.1	0.03	0.0067	12	0.027	0.017	540	<5		14 96
U/S	13-May-08	1.6	8.41	950	317	374	6.4	<0.4	456	50	<0.1	134	0.050	0.036	0.002	0.024	78.3	63.2	7.97	28.0	<0.01	0.0049	13	0.085	0.070	552	<5		13 99.9
U/S	6-Jun-08 6-Jun-08	31 40	8.20 8.29	811 789	185 260	225 317	<0.6 <0.6	<0.4 <0.4	381 341	22 45	0.4	236 111	0.103 0.630	0.102	0.005	0.653	63.0 55.9	54.3 48.8	5.77 23.5	26.9 23.0	0.28 0.56	0.0432	14 27	0.163 0.845	0.112 0.718	522 467	36 39		14 96.1 27 95.1
0/0	11-Jul-08	2.3	8.72	568	197	210	15	<0.4	261	34	0.2	65	0.055	0.034	0.007	< 0.005	42.7	37.6	5.56	13.7	0.04	0.0097	10	0.043	0.079	317	<5		11 95.1
	12-Aug-08	5.2	8.25	862	164	200	<0.6	<0.4	394	25	0.3	288	0.043	0.034	0.002	0.155	61.8	58.1	5.74	28.4	0.18	0.0238	15	0.059	0.047	566	10		15 92.4
U/S	12-Aug-08	25	8.18	561	195	238	<0.6	<0.4	237	38	0.1	58	0.700	0.043	0.002	0.439	39.5	33.6	28.6	14.8	1.06	0.4130	28	0.750	0.720	331	16		28 98.3
U/S	2-Sep-08 2-Sep-08	19 3.1	8.46 8.44	665 677	240 254	278 296	7.0 6.7	<0.4 <0.4	323 315	35 40	0.3	85 70	0.129 0.150	0.038	0.003	0.028	53.3 52.4	46.1 44.6	12.7 9.95	18.2 25.7	0.25	0.0311 0.0094	13 16	0.209 0.180	0.133 0.169	394 395	23 <5		14 100 17 99.7
0/5	7-Oct-08	4.6	8.59	810	314	352	15.2	<0.4	442	34	0.3	119	0.130	0.020	0.002	0.020	75.4	61.6	9.20	23.7	0.10	0.0034	13	0.063	0.058	511	5		13 -
U/S	7-Oct-08	3.3	8.53	958	366	419	13.7	<0.4	505	40	0.4	150	0.040	0.012	0.001	0.007	87.1	69.8	6.38	27.7	0.11	0.0187	12	0.061	0.056	601	7	0.8	13 -
	7-Nov-08	17	8.48	1000	305	353	9.6	<0.4	452	38	0.2	212	0.084	0.010	0.000	0.006	71.7	66.4	9.30	28.1	0.13	0.0239	14	0.142	0.115	608	20		14 90.5
U/S S-23	7-Nov-08 31-Jan-08	6.1 10	8.51 8.35	1110 1100	372 273	428 326	13.0 3.7	<0.4 <0.4	525 473	45 59	0.3	203 224	0.114 0.028	0.008	0.000	0.006	79.2 80.4	79.6 66.2	8.26 5.49	32.3 64.4	0.05	0.0076	16 3	0.161 0.063	0.122	670 664	<5 30	0.6	16 93.5 4 105
3-23	26-Feb-08	6.1	8.06	830	242	295	<0.6	<0.4	350	33	0.4	136	0.028	0.031	0.007	0.029	60.8	48.1	4.00	40.2	0.42	0.0872	2	0.003	0.032	467	<5		2 103
	12-Mar-08	-	8.22	879	240	292	<0.6	<0.4	371	75	0.2	208	0.027	0.028	0.000	0.038	62.3	52.3	4.31	52.6	0.09	0.0326	3	0.040	0.011	599	22		4.0 86.3-87.3
	25-Apr-08	74	8.17	1060	153	187	<0.6	<0.4	230	215	0.2	62	0.122	0.263	0.004	0.285	47.3	27.2	9.21	128	0.43	0.0473	9	0.214	0.108	582	61	1.1	9 99.5
	13-May-08 6-Jun-08	26 45	8.25 8.36	878 634	218 186	266 221	<0.6 2.9	<0.4 <0.4	348 302	38 16	0.2	179 143	0.018 0.055	0.054 0.058	0.002	0.085	53.9 65.9	51.9 33.4	5.41 4.43	50.3 20.5	0.19 0.31	0.0443 0.0430	9 12	0.092 0.115	0.025	510 396	17 48		9.0 101 14 98.2
	11-Jul-08	39	8.38	726	243	287	4.5	<0.4	315	46	0.2	99	0.033	0.056	0.004	0.203	62.5	38.6	4.96	39.9		0.0430	13	0.205	0.037	437	26		13 99
	12-Aug-08	6.9	8.28	939	224	273	<0.6	<0.4	419	55	0.3	240	0.022	0.115	0.008	0.008	65.9	61.8	4.79	57.8	0.16	0.0366	9	0.050	0.024	619	<5		9 99.8
	2-Sep-08	95	8.07	278	81	99	<0.6	<0.4	125	18	0.2	46	0.064	0.083	0.002	0.047	24.1	15.7	4.10	11.2			5	0.192	0.028	168	90	0.8	
	7-Oct-08	60 100	7.93 8.48	426	119 128	145 145	<0.6	<0.4	178	31	0.3	64 114	0.250	0.047	0.001	0.225	34.2	22.5 31.4	6.46	22.4 79.7			9 8	0.295	0.178 0.137	253	46 70	0.9 0.5	
	7-Nov-08 18-Dec-08	100 4.6	8.17	824 1560	373	455	5.6 <0.6	<0.4 <0.4	658	120 94	0.3	395	0.125	0.035 0.247	0.001	0.200	37.7 102	98.0	5.85 7.48	102	0.40	0.0369	o 5	0.221	0.137	- 1020	9		10 96.8 6 96.9
S-25	28-Jan-08	6.5	7.93	1050	297	362	<0.6	<0.4	444	46	0.3	203	0.007	0.027	0.000	0.054	76.0	61.7	5.18	51.5			1	0.017	0.012	621	9		1 98
	25-Feb-08	25	8.10	866	261	319	<0.6	<0.4	390	31	0.4	148	0.034	0.027	0.000	0.017	68.5	53.2	4.60				2	0.071	0.013	502	97		3 105
	25-Apr-08	38	8.31	465	157	189	1.0	<0.4	204	16	0.3	68	0.161	0.049	0.001	0.074	42.3	23.9	6.20	17.3			9	0.217	0.104	268	71		9 99.4
	13-May-08 6-Jun-08	37 95	8.57 8.40	773 724	226 218	254 256	10.9 4.6	<0.4 <0.4	331 343	25 20	0.2	144 158	0.011 0.056	0.036	0.003	0.014	57.3 72.5	45.7 39.4	5.20 4.35	34.7 27.7	0.18	0.0363	8 11	0.074 0.112	0.014	448 453	35 110	0.6	
	11-Jul-08	40	8.44	689	231	269	6.4	<0.4	298	43	0.3	89	0.030	0.002	0.004	0.098	59.5	36.4	4.91		0.64		12	0.112	0.128	433	35	1.1	
	12-Aug-08	32	8.39	875	210	247	4.6	<0.4	380	34	0.3	229	0.081	0.235	0.021	1.170	69.8	49.9	5.37	1	0.28		9	0.079	0.063	559	23		9 94.2
	2-Sep-08	45	8.42	661	170	198	4.7	<0.4	264	48	0.3	114	0.025	0.043	0.003	0.010	44.7	36.9	5.00	38.6	0.27	0.0463	7	0.118	0.024	390	49	1.1	
	7-Oct-08 7-Nov-08	60 80	8.25	575 1090	205 270	250 306	<0.6 11.5	<0.4 <0.4	266	34 101	0.4	75 180	0.288	0.202	0.008	0.082	54.9 67.3	31.4 52.5	9.23	28.9 74.2	0.60		13 13	0.305 0.209	0.242	357 644	41 67		13 - 13 92.0
	18-Dec-08	80 12	8.55 8.25	1370	360	440	<0.6	<0.4	384 611	71	0.4	310	0.104	0.211	0.007	0.107	99.0	52.5 88.3	6.25 7.59	1 1	0.26		7	0.209	0.122	644 874	7		7 101
	10 000 00	12	0.20	1010	000	-1-0	-0.0	U.T			7 .7	010	0.044	0.221	0.00-	0.101	00.0	00.0	1.00	00.0	0.21	0.0100		0.512	0.002	т	1	0.0	. 101

															Paran	neter ⁽²⁾														
Sample No. ⁽¹⁾	Date	Turbidity (NTU)	pH (units)	E.C. (µS/cm)	Alkalinity as CaCO ₃	Bicarbonate as HCO ₃	Carbonate as CO ₃	Hydroxide as OH	Hardness as CaCO ₃	Chloride - Soluble	Fluoride - Soluble	Sulphate - Soluble	Ortho- Phosphorus Soluble as P	Ammonia (NH ₃) - Soluble	Unionized Ammonia	Nitrate+ Nitrite-N Soluble	Calcium	Magnesium	Potassium	Sodium	Iron	Manganese	D.O.C	Total Phosphorus	Total Dissolved Phosphorus	T.D.S. (Calc.)	T.S.S.	T.K.N.	T.O.C.	lon Balance (%)
S-26	25-Apr-08	4.2	8.34	613	270	324	2.7	<0.4	314	17	0.3	48	0.011	0.005	0.000	0.017	66.7	35.8	3.61	13.0	0.07	0.0053	12	0.031	0.019	346	<5	0.7	12	101
U/S	25-Apr-08	3.9	8.36	630	269	322	3.1	<0.4	330	16	0.3	46	0.012	0.007	0.000	0.022	70.2	3.95	3.95	13.5	0.08	0.0053	11	0.031	0.020	349	<5	0.6	11	107
	13-May-08	9.8	8.27	893	279	341	<0.6	<0.4	425	55	<0.1	123	0.024	0.021	0.001	0.007	85.0	51.6	3.70	26.9	0.05	0.0122	15	0.050	0.035	513	11	0.7	16	101
U/S	13-May-08 6-Jun-08	32 35	8.33 8.09	1580 487	236 148	281 180	3.2 <0.6	<0.4 <0.4	618 208	259 25	0.2	278 60	0.012 0.162	0.077	0.004	0.016 0.424	105.0 40.1	86.4 26.1	8.43 3.72	89.1 19.9	0.26 0.34	0.0116	16 14	0.043 0.270	0.016 0.178	967 265	30 50	0.8 1.3	16 14	92.3 103
U/S	6-Jun-08	45	8.20	996	140	155	<0.6	<0.4	389	91	0.2	264	0.102	0.052	0.002	0.424	68.1	53.2	5.96	53.2	0.23	0.0328	14	0.081	0.033	614	45	1.0		96
	11-Jul-08	7.8	8.02	746	308	376	<0.6	<0.4	326	39	0.3	47	2.710	1.990	0.094	0.110	61.6	41.8	6.92	38.9	0.20	0.0516	13	2.790	2.740	420	12	3.1	14	102
U/S	11-Jul-08	5.6	8.07	754	303	369	<0.6	<0.4	333	41	0.3	57 185	2.370	1.560	0.083	0.012	60.8	44.1 38.4	6.65	38.7 37.2	0.30 0.32	0.0478	14	2.360 0.260	2.350 0.235	430 458	<5	2.9 1.7		101 92.2
U/S	12-Aug-08 12-Aug-08	34 65	8.06 8.13	738 873	133 119	162 146	<0.6 <0.6	<0.4 <0.4	289 343	58 70	0.4	252	0.245	0.152 0.285	0.006	0.252 0.277	52.6 61.3	46.3	5.56 5.42	43.3	0.32	0.0460	15 15	0.200	0.235	438 551	42 76	2.6		92.2
	2-Sep-08	12	8.21	566	171	208	<0.6	<0.4	245	41	0.3	80	0.075	0.041	0.002	0.020	40.0	35.1	6.00	27.6	0.25	0.0264	13	0.113	0.084	332	10	1.0	14	99.9
U/S	2-Sep-08	15	8.22	633	169	206 297	<0.6 <0.6	<0.4	260	53 41	0.4	100 107	0.049	0.041	0.002	0.016	39.4	39.2	6.70	35.4	0.25	0.0156	14 12	0.079	0.045	375 442	12	1.0	14	99
U/S	7-Oct-08 7-Oct-08	5.5 2.9	8.27 8.31	733 549	243 244	297	<0.6	<0.4 <0.4	365 284	25	0.3	30	0.048	0.003	0.000	0.010 0.026	61.8 52.5	51.1 37.2	5.95 4.85	29.3 12.8	0.15	0.0144	12	0.069 0.088	0.059 0.082	309	<5 <5	0.6 0.6	13 12	-
	7-Nov-08	20	8.46	1000	292	340	8.0	<0.4	442	56	0.4	201	0.041	0.008	0.000	0.014	68.3	65.9	5.09	38.2	0.13	0.0168	15	0.079	0.052	610	19	0.6	15	91.4
U/S	7-Nov-08	7.3	8.41	708	292	343	6.5	<0.4	-	27	0.2	80	0.097	0.021	0.001	0.039	66.3	43.9	5.10	13.1	0.07	0.0129	15	0.136	0.106	-	6	0.7	16	92.1
S-27 U/S	25-Apr-08 25-Apr-08	7.2 9.5	8.29 8.28	591 595	263 265	321 323	<0.6 <0.6	<0.4 <0.4	303 318	12 12	0.3	53 51	0.009	0.010	0.000	<0.005 0.015	58.8 62.3	38.1 39.5	2.29 2.38	9.24 9.29	0.06	0.0025	14 15	0.026	0.014 0.013	331 335	9 <5	0.7	15 15	97.2 102
0,0	13-May-08	9.2	8.35	660	308	368	3.9	<0.4	389	13	0.2	72	0.007	0.019	0.001	< 0.005	78.9	46.7	1.75	7.13	0.09	0.0120	17	0.027	0.014	405	<5	0.7	17	101
U/S	13-May-08	8.0	8.33	660	308	369	3.5	<0.4	353	13	0.2	70	0.006	0.014	0.001	<0.005	73.2	41.4	1.87	-	0.08	0.0092	17	0.020	0.013	392	7	0.7	17	93.2
U/S	6-Jun-08 6-Jun-08	140 5.4	8.35 8.18	601 662	251 323	300 393	2.9 <0.6	<0.4 <0.4	323 361	<9 10	0.3	105 49	0.087	0.053 0.045	0.004	0.434 0.022	64.9 67.0	39.2 47.1	2.93 1.31	11.0 8.46	0.42 0.05	0.0522	17 22	0.122 0.033	0.023	375 376	150 8	1.1 1.0	17 22	96.9 98.2
0/5	12-Aug-08	270	8.10	405	112	136	<0.6	<0.4	232	10	0.6	108	0.341	0.045	0.002	0.022	47.3	27.7	4.66	12.7	0.00	0.0228	13	0.332	0.022	283	320	1.1		108
U/S	12-Aug-08	290	8.17	339	88	108	<0.6	<0.4	180	23	0.6	90	0.125	0.016	0.001	0.776	37.6	20.9	4.20	10.8	0.72	0.0589	12	0.284	0.031	243	210	1.0		95.3
11/6	2-Sep-08	23	8.24	643	190	232	<0.6	<0.4	317	22	0.4	142 163	0.013	0.039	0.002	0.026	52.6 52.4	45.0 44.2	3.59 3.58	21.2	0.30	0.0163	13	0.041	0.018	401	30	0.6	14	99.2
U/S	2-Sep-08 7-Oct-08	17 12	8.23 8.21	635 975	184 340	225 415	<0.6 <0.6	<0.4 <0.4	313 512	22 22	0.4	229	0.007	0.006	0.000	0.017	82.3	74.5	4.89	20.9 25.7	0.22 0.18	0.0122	13 18	0.030	0.015 0.015	417 643	26 15	0.7	14 19	93.9
U/S	7-Oct-08	1.1	8.14	899	383	468	<0.6	<0.4	534	24	0.5	141	0.003	0.006	0.000	0.005	84.2	78.7	4.39	20.7	0.16	0.0076	20	0.015	0.015	583	<5	0.8	20	-
	7-Nov-08	45	8.41	876	303	357	6.2	<0.4	-	22	0.4	188	0.009	0.071	0.002	0.020	74.5	63.6	3.71	21.0	0.17	0.0201	17	0.043	0.018	-	63	0.6	17	93.8
U/S S-28	7-Nov-08 28-Jan-08	2.1 10	8.39 7.95	877 1300	360 362	425 442	6.7 <0.6	<0.4 <0.4	- 555	23 76	0.3	141 250	<0.001 0.010	0.033	0.001	0.016	71.7 98.0	65.9 75.3	3.39 6.79	17.2 67.6	<0.01 0.10	0.0018	18 2	0.016	0.010	- 791	<5 11	0.6	20 2	91.2 97.1
Field Dup.	28-Jan-08	16	7.97	1360	363	443	<0.6	<0.4	581	93	0.5	252	0.013	0.046	0.000	0.113	101.0	80.0	7.26	97.6	0.15	0.0312	2	0.029	0.013	849	19	0.2	3	106
	25-Feb-08	5.4	8.12	965	290	354	<0.6	<0.4	435	33	0.3	172	0.009	0.011	0.000	0.022	74.3	60.7	5.13	49.1	0.19	0.0115	2	0.019	0.010	569	13	<0.2		106
Field Dup.	25-Feb-08 11-Mar-08	4.9 11	8.10 8.14	962 953	290 252	354 308	<0.6 <0.6	<0.4 <0.4	447 376	34 57	0.4	171 174	0.01 0.019	0.027	0.000	0.026	76.8 65.3	62.1 51.8	5.4 5.53	49.4 82.8	0.18	0.0112	2	0.018 0.029	0.010	573 588	<5 <5	0.2	2 3.0	109 109
Field Dup.	11-Mar-08	10	8.19	1000	252	305	2.5	<0.4	392	102	0.4	201	0.019	0.013	0.000	0.073	66.7	54.7	7.53	134	0.12	0.0222	4	0.023	0.013	656	<5	0.2	4.0	103
	25-Apr-08	55	8.32	462	177	213	1.5	<0.4	210	14	0.3	56	0.106	0.051	0.001	0.047	44.5	24.1	5.36	14.0	0.31	0.0205	10	0.158	0.086	264	46	0.9	10	96.7
Field Dup.	25-Apr-08	55 12	8.34	464 729	177 237	212 278	2.0 5.4	<0.4 <0.4	218 318	14 22	0.3	57 121	0.109	0.055	0.001	0.030	45.5 59.8	25.5 40.9	5.56 4.70	14.3 28.8	0.31 0.12	0.0261	10 8	0.160 0.049	0.086	267 420	44 <5	0.9 0.5	10 9.0	99.9 98.1
Field Dup.	13-May-08 13-May-08	13 12	8.41 8.42	729	237	278	5.8	<0.4	320	22	0.2	121	0.011	0.027	0.001	0.015	59.8	40.9	5.22	20.0	0.12	0.0307	8	0.049	0.020	420	<5 <5	0.5	9.0	98.3
	6-Jun-08	850	8.34	516	191	229	2.0	<0.4	411	15	0.3	86	0.467	0.084	0.004	0.161	97.2	41.0	3.95	17.3	1.35	0.2050	10	0.557	0.062	375	790	1.8	10	150
Field Dup.	6-Jun-08	800	8.34	520	171	205	2.1	<0.4	407	15	0.3	87	0.415	0.076	0.004	0.416	96.6	40.2	3.87	17.1	1.28	0.2010	10	0.483	0.065	364	770	1.4	10	157
Field Dup.	11-Jul-08 11-Jul-08	29 28	8.38 8.37	661 662	228 228	270 271	3.9 3.7	<0.4 <0.4	287 302	37 37	0.3	84 84	0.174 0.174	0.054 0.056	0.006	0.280	55.6 58.5	36.1 37.9	4.73 5.14	33.6 35.1	0.24 0.27	0.0299	12 12	0.219 0.225	0.179 0.176	389 396	26 25	0.9 0.9	12 12	99.5 104
	12-Aug-08	160	8.22	645	207	252	<0.6	<0.4	325	29	0.2	112	0.202	0.053	0.003	0.110	62.9	40.8	4.29	28.4	0.56	0.0551	8	0.207	0.080	402	130	0.7	8	107
Field Dup.	12-Aug-08	170	8.29	644	217	264	<0.6	<0.4	327	28	0.2	113	0.150	0.028	0.002	0.107	61.7	42.0	4.24	29.2		0.0539	8	0.203	0.083	409	150	0.7		106
Field Dup.	2-Sep-08 2-Sep-08	30 31	8.30 8.29	934 933	197 197	237 240	1.6 <0.6	<0.4 <0.4	398 408	42 41	0.3	266 253	0.078	0.122 0.116	0.006	0.086	67.7 68.9	55.5 57.3	6.05 6.14	49.0 50.4	0.27 0.30	0.0387	9	0.117 0.122	0.075 0.074	605 596	34 33	1.1 1.1		95.8 101
Tiold Dup.	7-Oct-08	70	8.16	641	211	257	<0.6	<0.4	290	38	0.3	93	0.301	0.163	0.005	0.126	58.5	34.9	9.39		0.66		13	0.314	0.240	393	58	1.1		-
Field Dup.	7-Oct-08	70	8.17	642	211	257	<0.6	<0.4	285	38	0.3	95	0.304	0.181	0.006	0.122	57.7	34.3	9.18		0.68		13	0.327	0.246	393	55	0.9		-
Field Dup.	7-Nov-08 7-Nov-08	50 80	8.52 8.55	977 1090	268 270	306 304	10.1 12.3	<0.4 <0.4	- 396	58 101	0.4	170 177	0.072 0.108	0.157 0.099	0.005	0.123 0.093	71.2 69.3	52.1 54.1	6.02 6.42	56.5 77.2	0.25 0.64	0.0245	12 14	0.142 0.205	0.081 0.116	- 648	44 68	0.8		99.0 95.6
i leid Dup.	18-Dec-08	9.3	8.21	1430	422	515	<0.6	<0.4	651	73	0.4	309	0.056	0.165	0.003	0.358	104	94.8	7.69	-	0.19		7	0.083	0.065	921	5	0.6		97.3
Field Dup.	18-Dec-08	9.6	8.26	1430	420	512	<0.6	<0.4	652	73	0.4	295	0.056	0.167	0.003	0.373	106	94.5	7.81	78.0	0.18	0.0382	6	0.079	0.065	908	7	0.5	7	100
S-30	28-Jan-08	7.1	7.86	1000	293	358	<0.6	<0.4	406	45	0.3	168	0.383	1.970	0.013	1.060	89.8	44.2	10.4		0.12		11	0.430	0.420	600	12	2.6		103
	25-Feb-08 11-Mar-08	5.2 5.6	7.95 8.17	1010 921	306 299	373 365	<0.6 <0.6	<0.4 <0.4	410 368	41 30	0.3	160 161	0.451 0.377	1.880 1.580	0.015 0.030	1.140 1.290	88.8 78.8	45.7 41.7	10.3 8.43	-	0.14 0.04		9	0.474	0.455	593 554	<5 <5	2.7	10 9.0	103 93.8
	25-Apr-08	160	8.24	529	179	218	<0.6	<0.4	254	17	0.3	82	0.221	0.128	0.003	0.532	57.0	27.1	6.22	20.8		0.2090	9	0.366	0.127	319	300	1.4		106
	13-May-08	95	8.34	695	209	249	3.1	<0.4	294	18	0.1	138	0.122	0.394	0.001	0.382	63.1	33.3	5.94	27.9		0.1090	9	0.252	0.115	414	58	1.4		95.6
	6-Jun-08 11-Jul-08	45 140	8.50 8.54	745 781	227 234	262 265	7.3 9.9	<0.4 <0.4	321 380	27 31	0.2	142 169	0.094 0.148	0.404	0.035 0.026	0.118	66.7 79.4	37.5 44.1	6.99 7.22	39.8 41.8	0.25	0.0872	11 11	0.184 0.499	0.080	457 512	59 260	1.3 1.6		101 106
	12-Aug-08	37	8.43	745	234	264	6.2	<0.4	291	34	0.3	145	0.148	0.051	0.020	0.830	59.5	34.6	7.96		0.28		12	0.499	0.143	461	41	-	12	90.6
	2-Sep-08	70	8.32	607	171	205	2.2	<0.4	260	30	0.5	114	0.227	0.269	0.018	0.850	52.2	31.6	7.96	34.7	0.77	0.1560	9	0.311	0.217	377	140	1.3	9.0	103
S 20	7-Oct-08	50	8.22	646 846	201	245	<0.6	<0.4	272	32	0.3	112	0.373	0.623	0.023	0.534	58.0	31.0	9.58	-	0.43		11	0.403	0.326	399	41	1.4		-
S-30	7-Nov-08 18-Dec-08	130 400	8.43 8.31	846 1120	238 298	278 360	6.3 1.6	<0.4	- 587	36 78	0.4	184 278	0.159 0.278	0.383	0.012	0.667	79.0 124	45.1 67.2	8.06 10.2		0.65	0.1650	15 15	0.334 0.952	0.155	- 813	190 680	1.4 3.7		100 108
			5.01		200						0.1	2.0	0.2.0	1.000	2.077	2.000		···-				5010		2.002	0.2.1	5.5	000	0.7		

															Param	eter (2)														
Sample No. ⁽¹⁾	Date	Turbidity (NTU)	pH (units)	E.C. (µS/cm)	Alkalinity as CaCO ₃	-	Carbonate as CO ₃	Hydroxide as OH	as CaCO ₃	Chloride - Soluble	Fluoride - Soluble	Sulphate - Soluble	Ortho- Phosphorus Soluble as P	Ammonia (NH ₃) - Soluble	Unionized Ammonia (3)	Soluble	Calcium	Magnesium			Iron	Manganese		Total Phosphorus		T.D.S. (Calc.)	T.S.S.	T.K.N.		(%)
S-31	28-Jan-08	5.9	7.77	998	293	357	<0.6	<0.4	390	44	0.3	170	0.392	2.050	0.010	1.050	86.2	42.3	10.0	59.0		0.0348	10	0.428	0.412	592	5	2.8	11	98.9
-	25-Feb-08	5.2	8.01	1010	306	374	<0.6	<0.4	400	42	0.3	169	0.459	1.900	0.017	1.130	86.7	44.6	10.0	58.2	0.12	0.0348	10	0.479	0.453	599	8	2.7	10	98.7
	11-Mar-08	6.4	8.29	927	306	373	<0.6	<0.4	379	32	0.3	157	0.445	2.050	0.065	1.410	83.6	41.4	9.44	49.2	0.08	0.0360	10	0.474	0.427	562	<5	2.8	10	95.8
	25-Apr-08	220	8.20	605	182	221	<0.6	<0.4	280	24	0.2	116	0.299	0.185	0.004	0.962	64.6	28.9 34.4	7.26	28.9	1.20	0.2930	8	0.458	0.148	383	310	1.5	8	104
	13-May-08	95	8.30	694 760	207 224	249 257	1.4	<0.4	308	18 28	0.2	140	0.111	0.396	0.015	0.405	66.5	34.4	6.29	29.3 42.0	0.46	0.1060	9 11	0.244	0.107	420	77 54	1.4 1.4	10 11	100 101
	6-Jun-08 11-Jul-08	40 50	8.52 8.51	827	224	265	8.1 9.2	<0.4 <0.4	323 366	33	0.3	149 190	0.107 0.129	0.385	0.035	0.124	67.1 75.1	43.4	7.39 7.64	42.0	0.25 0.38	0.0844	11	0.201 0.275	0.083	466 535	54 72	1.4	11	99.8
	12-Aug-08	38	8.41	755	233	265	9.2 5.4	<0.4	298	33	0.4	190	0.129	0.145	0.020	<0.005	61.4	43.4 35.2	8.37	40.1	0.29	0.1030	12	0.275	0.128	471	35	1.3	13	99.8 92.6
	2-Sep-08	60	8.33	608	171	207	2.4	<0.4	230	30	0.2	140	0.230	0.391	0.007	0.857	48.2	29.7	8.10	35.4	0.23	0.1030	9	0.244	0.201	375	68	1.4	9.0	97.8
	7-Oct-08	50	8.24	649	201	245	<0.6	<0.4	243	32	0.4	110	0.375	0.652	0.025	0.583	53.2	28.1	8.56	31.6	0.34	0.0566	11	0.303	0.319	386	47	1.4	<u> </u>	57.0
	7-Nov-08	150	8.43	844	237	243	6.2	<0.4	-	36	0.4	184	0.142	0.299	0.009	0.725	79.0	44.1	8.01	40.9	0.66	0.0300	14	0.377	0.158	-	200	1.7	14	98.9
ŀ	18-Dec-08	110	8.36	1180	321	384	3.9	<0.4	535	53	0.4	260	0.265	0.813	0.017	0.885	112	62.3	10.8	71.4	1.36	0.3220	14	0.482	0.267	765	250	2.1	15	105
S-32	28-Jan-08	5.7	7.77	996	293	357	<0.6	<0.4	397	43	0.3	172	0.397	2.070	0.012	1.060	88.7	42.7	10.0	58.5	_	0.0361	10	0.430	0.415	596	12	2.8	11	100
0 02	25-Feb-08	4.9	7.94	1000	305	372	<0.6	<0.4	393	42	0.3	165	0.455	1.880	0.015	1.110	85.4	43.6	9.81	57.1	0.11	0.0344	10	0.477	0.459	590	6	2.7	10	97.9
ŀ	11-Mar-08	4.6	8.00	928	305	372	<0.6	<0.4	382	31	0.3	164	0.432	2.030	0.034	1.490	84.1	41.8	9.47	48.7	0.06	0.0358	10	0.463	0.427	569	<5	2.8	10	95.1
	25-Apr-08	240	8.17	642	180	219	<0.6	<0.4	300	26	0.3	129	0.321	0.217	0.004	1.280	69.0	31.0	7.76			0.3610	8	0.502	0.158	240	430	1.7	8	108
	13-May-08	90	8.29	691	205	250	<0.6	<0.4	318	18	0.2	143	0.115	0.418	0.015	0.421	70.3	34.7	6.72	29.2		0.0982	9	0.240	0.103	427	110	1.4	9.0	103
	6-Jun-08	38	8.53	777	225	257	8.7	<0.4	328	28	0.2	154	0.120	0.515	0.049	0.127	68.1	38.5	7.64	42.8	0.23	0.0815	10	0.184	0.091	475	49	1.3	11	101
	11-Jul-08	40	8.45	828	233	271	6.7	<0.4	373	30	0.3	196	0.128	0.102	0.012	0.042	77.3	43.8	7.90	45.5	0.34	0.0921	12	0.246	0.127	540	53	1.2	12	101
	12-Aug-08	37	8.39	757	226	266	4.8	<0.4	293	32	0.3	147	0.250	0.047	0.005	0.960	61.3	34.1	8.32	42.1	0.29	0.1020	12	0.249	0.203	466	39	1.5	13	92.3
	2-Sep-08	55	8.30	615	172	210	<0.6	<0.4	240	30	0.5	117	0.243	0.226	0.015	0.872	47.6	29.5	7.85	35.1	0.48	0.1160	8	0.302	0.219	374	62	1.3	7.9	96.2
	7-Oct-08	45	8.22	648	201	245	<0.6	<0.4	254	31	0.4	114	0.384	0.654	0.025	0.586	55.0	28.3	8.95	31.2	0.48	0.0733	11	0.401	0.335	391	41	1.4	11	-
	7-Nov-08	150	8.41	838	236	277	5.4	<0.4	-	34	0.4	186	0.160	0.308	0.009	0.754	79.1	43.8	8.24	40.5	0.67	0.1920	13	0.381	0.177	-	210	1.8	14	98.9
	18-Dec-08	400	8.35	1150	312	374	3.1	<0.4	583	54	0.3	276	0.263	0.930	0.020	0.899	126	65.3	10.4	70.5	1.93	0.875	13	0.799	0.261	793	700	3.3	14	110
S-33	28-Jan-08	7.1	7.78	1000	294	359	<0.6	<0.4	407	47	0.3	184	0.360	1.850	0.010	1.090	90.0	44.4	10.4	59.9	0.17	0.0372	11	0.401	0.378	618	11	2.6	10	99
	25-Feb-08	5.6	8.02	1010	307	375	<0.6	<0.4	403	41	0.3	168	0.406	1.580	0.015	1.170	87.1	45.1	9.65	57.9	0.14	0.0355	9	0.431	0.406	598	7	2.3	10	99.3
	11-Mar-08	5.1	7.97	925	304	370	<0.6	<0.4	380	31	0.3	167	0.367	1.460	0.014	1.430	82.7	42.2	9.14	49.0	0.05	0.0353	10	0.399	0.370	569	7	2.2	9.0	94.6
	25-Apr-08	260	8.17	652	183	223	<0.6	<0.4	302	26	0.3	129	0.299	0.240	0.006	1.320	69.2	31.4	7.80	35.0	1.49	0.3490	15	0.504	0.162	413	490	1.6	15	108
	13-May-08	80	8.29	689	204	249	<0.6	<0.4	294	18	0.1	143	0.124	0.513	0.019	0.423	64.9	32.0	6.22	27.3	0.36	0.0928	9	0.246	0.110	416	98	1.4	10	95
	6-Jun-08 11-Jul-08	39 50	8.53 8.43	779 828	222 230	254 269	8.3 6.1	<0.4	329 369	28 30	0.3	155 196	0.114	0.510	0.033	0.193	68.4 76.5	38.5 43.2	7.70	43.1 45.4	0.23 0.43	0.0806	11 11	0.203	0.090	475 539	50 65	1.3 1.2	11 12	102 99.8
-	12-Aug-08	37	8.38	020 756	230	269	4.5	<0.4 <0.4	294	30	0.3	196	0.135	0.030	0.003	1.050	62.1	43.2 33.7	8.52		0.43	0.1040	12	0.274	0.135	475	43	1.2	12	99.0 91.2
-	2-Sep-08	60	8.31	609	171	205	1.8	<0.4	234	30	0.5	116	0.237	0.024	0.002	0.875	47.1	29.4	7.86	34.8	0.53	0.1000	8	0.296	0.200	372	67	1.0	8.0	96.2
·	7-Oct-08	45	8.21	648	199	243	<0.6	<0.4	252	31	0.4	117	0.378	0.677	0.015	0.582	54.2	28.4	8.97	32.3	0.39	0.0650	10	0.407	0.325	393	37	1.4	11	-
	7-Nov-08	130	8.41	832	234	274	5.4	<0.4	-	34	0.3	186	0.166	0.333	0.010	0.772	77.8	42.9	8.31	40.1	0.63	0.1790	12	0.356	0.170	-	190	2.0	13	97.9
	18-Dec-08	120	8.30	1200	321	390	1	<0.4	505	56	0.4	289	0.263	0.717	0.015	0.882	105	58.7	10.6	67.9	0.79	0.1800	14	0.376	0.263	784	110	2.2	14	94.3
S-34	28-Jan-08	6.3	7.83	1000	293	358	<0.6	<0.4	395	45	0.3	167	0.347	1.620	0.010	1.050	88.3	42.3	9.84			0.0369	10	0.384	0.357	591	12	2.3		99.7
	25-Feb-08	4.9	8.01	1010	306	374	<0.6	<0.4	398	41	0.3	163	0.442	1.730	0.016	1.090	86.6	44.1	9.86	58.7	0.11	0.0345	10	0.464	0.442	593	6	2.6	10	99.8
	11-Mar-08	4.1	8.04	937	306	373	<0.6	<0.4	376	31	0.3	161	0.445	2.200	0.028	1.410	83.2	41.0	9.35	48.6	0.07	0.0369	10	0.463	0.433	564	<5	2.8	10	94.5
	25-Apr-08	330	8.20	661	181	221	<0.6	<0.4	310	26	0.3	134	0.361	0.217	0.004	1.340	72.7	31.2	7.83	35.0	1.47	0.4370	8	0.632	0.146	421	480	2.0	8	109
	13-May-08	95	8.33	691	202	241	2.7	<0.4	307	18	0.1	143	0.104	0.383	0.016	0.424	62.5	36.6	5.88	27.4	0.40	0.1240	9	0.246	0.082	417	120	1.4	10	98.9
	6-Jun-08	50	8.54	792	226	258	8.7	<0.4	343	29	0.2	160	0.108	0.502	0.048	0.105	71.3	40.0	8.00	45.5	0.35	0.1160	11	0.233	0.088	491	79	1.5	11	104
	11-Jul-08	150	8.53	838	232	263	9.8	<0.4	382	29	0.3	200	0.131	0.069	0.011	<0.005	80.1	44.3	8.20	45.4	0.61	0.1880	11	0.343	0.124	546	300	1.4	12	102
	12-Aug-08	39	8.46	750	225	260	7.1	<0.4	297	34	0.2	144	0.226	0.061	0.007	0.823	61.5	34.9	8.54	43.1	0.30	0.1050	11	0.233	0.167	464	47	1.4	12	94.3
	2-Sep-08	55	8.35	601	170	200	3.1	<0.4	239	30	0.4	125	0.281	0.394	0.028	0.857	47.3	29.4	7.95		0.52	0.1230	8	0.307	0.225	380	63	1.1	8.0	94.4
	7-Oct-08	45	8.28	647	199	243	<0.6	<0.4	274	30	0.4	118	0.387	0.742	0.032	0.573	59.6	30.3	9.93	34.4		0.0720	11	0.418	0.330	405	40	1.4		
	7-Nov-08	140	8.36	840	233	274	5.0	<0.4	-	33	0.4	187	0.160	0.263	0.007	0.747		43.3	8.22	40.3		0.1890	14	0.354	0.146	-	200	1.5		98.8
	18-Dec-08	380	8.35	1160	316	377	3.7	<0.4	589	53	0.3	279	0.265	0.817	0.016	0.894	128	65.4	10.2	70.0		0.7310	15	0.892	0.269	800	670	3.4		110
S-35	25-Apr-08	9.5	8.23	533	116	142	<0.6	<0.4	183	59	0.2	43	0.172	0.044	0.001	0.091	40.5	20.0	8.40	19.3		0.0061	13	0.238	0.219	260	5	0.9		96.3
ļ	7-Oct-08	6.2	8.10	1040	162	198	<0.6	<0.4	364	188	0.3	100	0.244	0.054	0.001	0.044		43.2	13.2	46.9		0.1300	15	0.310	0.275	563	<5	0.3		
	7-Nov-08	440	7.83	386	54	66	<0.6	<0.4	128	61	0.2	71	0.412	0.150	0.001	1.090	26.1	15.4	7.97	15.5		0.0316	14	0.723	0.457	234	120	1.1		78.9
S-36	25-Apr-08	35	8.17	342	89	108	<0.6	<0.4	133	12	0.2	63	0.207	0.045	0.001	0.273		14.3	8.12	10.3		0.0055	12	0.243	0.213	192	14	-	12	92.2
	13-May-08	20	8.18	829	178	217	<0.6	<0.4	353	33	0.2	209	0.046	0.093	0.002	0.052	78.1	38.3	12.4	32.7		0.0603	13	0.150	0.083	511	24	1.2		99.3
	6-Jun-08	36	7.94	1670	144	176	<0.6	<0.4	850	80	0.3	675	0.054	0.162	0.004	1.400	187	92.9	14.3	73.6			11	0.142	0.065	1220	52	1.2		106
	7-Nov-08	140	8.01	193	61	75	<0.6	<0.4	74.5	18	0.3	51	0.588	0.373	0.004	1.460	17.2	7.66	8.35	5.35	0.36	0.0225	15	0.713	0.619	151	63	1.5	18	66.3

															Param	neter ⁽²⁾														
Sample No. ⁽¹⁾	Date	Turbidity (NTU)		E.C. (µS/cm)	Alkalinity as CaCO ₃		Carbonate as CO ₃	Hydroxide as OH	Hardness as CaCO ₃	Chloride - Soluble	Fluoride - Soluble	Sulphate - Soluble	Ortho- Phosphorus Soluble as P	Ammonia (NH ₃) - Soluble	Unionized Ammonia		Calcium	Magnesium	Potassium	Sodium	Iron	Manganese	D.O.C	Total Phosphorus	Total Dissolved Phosphorus	T.D.S. (Calc.)	T.S.S.	T.K.N.	T.O.C.	lon Balance (%)
Level I		_							1											_										
CON D/S	13-May-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<5	-	-	-
	26-May-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	24	-	-	-
	6-Jun-08	-	8.33	-	-	-	-	-	-	-	-	-	0.439	0.078	0.004	0.230	-	-	-	-	-	-	-	0.735	0.041	-	1700	10	-	-
	9-Jun-08	-	8.16	-	-	-	-	-	-	-	-	-	0.075	0.052	0.002	1.500	-	-	-	-	-	-	-	0.145	0.076	-	62	1.0	-	-
	12-Jun-08	-	8.37	-	-	-	-	-	-	-	-	-	0.082	0.014	0.001	2.800	-	-	-	-	-	-	-	-	0.101	-	9	1.2	-	-
	28-Jun-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	150	-	-	-
	11-Jul-08	-	8.32	-	-	-	-	-	-	-	-	-	0.192	0.069	0.007	0.385	-	-	-	-	-	-	-	0.245	0.203	-	44	12	-	-
	29-Jul-08	-	8.18	-	-	-	-	-	-	-	-	-	0.035	0.051	0.003	< 0.005	-	-	-	-	-	-	-	0.122	0.039	-	77	0.7	-	-
	12-Aug-08 22-Aug-08	-	8.29 8.24	-	-	-	-	-	-	-	-	-	0.115 0.020	0.069	0.004	0.503	-	-	-	-	-	-	-	0.119 0.150	0.090	-	28 51	0.6	-	-
	22-Aug-08 2-Sep-08	-	8.29	-	-	-	-	-	-	-	-	-	0.020	0.005	0.005	0.000	-	-	-	-	-	-	-	0.105	0.022	-	300	1.2	-	-
	23-Sep-08	-	8.09	-	-	-	-	-	-	-	-	-	0.000	0.103	0.003	0.224	-	-	-	-	-	-	-	0.105	0.038	-	140	0.7	_	-
	7-Oct-08	-	8.09	-	-	-	-	-	-	-	-	-	0.299	0.166	0.002	0.596	-	-	-	-	-	-	-	0.318	0.244	-	57	1.0	-	-
	13-Oct-08	-	8.30	-	-	-	-	-	-	-	-	-	0.155	0.084	0.003	0.154	-	-	-	-	-	-	-	0.167	0.096	-	58	0.9	-	-
	7-Nov-08	-	8.50	-	-	-	-	-	-	-	-	-	0.062	0.176	0.005	0.219	-	-	-	-	-	-	-	0.124	0.072	-	36	0.8	-	-
CON U/S	26-May-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	-	-	-
	6-Jun-08	-	8.27	-	-	-	-	-	-	-	-	-	0.119	0.062	0.003	0.264	-	-	-	-	-	-	-	0.171	0.100	-	69	11	-	-
	9-Jun-08	-	8.27	-	-	-	-	-	-	-	-	-	0.103	0.033	0.002	0.084	-	-	-	-	-	-	-	0.136	0.118	-	<5	0.7	-	-
	12-Jun-08	-	8.04	-	-	-	-	-	-	-	-	-	0.126	0.026	0.001	0.031	-	-	-	-	-	-	-	-	0.141	-	7	0.7	-	-
	28-Jun-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11	-	-	-
	11-Jul-08	-	8.84	-	-	-	-	-	-	-	-	-	0.079	< 0.003	0.001	0.017	-	-	-	-	-	-	-	0.101	0.092	-	<5	0.8	-	-
	29-Jul-08	-	9.19	-	-	-	-	-	-	-	-	-	0.230	0.104	0.036	< 0.005	-	-	-	-	-	-	-	0.043	0.037	-	<5	1.7	-	-
	23-Sep-08	-	7.82	-	-	-	-	-	-	-	-	-	0.156	0.050	0.001	1.100	-	-	-	-	-	-	-	0.245	0.164	-	59	0.8	-	-
	7-Oct-08 13-Oct-08	-	8.35 8.22	-	-	-	-	-	-	-	-	-	0.129 0.158	<0.003 0.014	0.000	0.110 0.068	-	-	-	-	-	-	-	0.145	0.139 0.169	-	<5 10	0.5	-	-
	7-Nov-08	-	8.39	-	-		-	-	-	-	-	-	0.138	0.014	0.000	0.008	-		-	-	-		-	0.185	0.169	-	5	0.0	-	-
S-31	13-May-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	77	-	-	-
001	26-May-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	54	-	-	-
	6-Jun-08	-	8.52	-	-	-	-	-	-	-	-	-	0.107	0.385	0.035	0.124	-	-	-	-	-	-	-	0.201	0.083	-	54	11	-	-
	9-Jun-08	-	8.29	-	-	-	-	-	-	-	-	-	0.083	0.089	0.005	0.903	-	-	-	-	-	-	-	0.170	0.088	-	53	1.2	-	-
	12-Jun-08	-	8.27	-	-	-	-	-	-	-	-	-	0.102	0.077	0.004	2.310	-	-	-	-	-	-	-	-	0.124	-	63	1.4	-	-
	28-Jun-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	170	-	-	-
	11-Jul-08	-	8.51	-	-	-	-	-	-	-	-	-	0.129	0.145	0.020	<0.005	-	-	-	-	-	-	-	0.275	0.128	-	72	11	-	-
	29-Jul-08	-	8.37	-	-	-	-	-	-	-	-	-	0.186	0.245	0.025	< 0.005	-	-	-	-	-	-	-	0.251	0.171	-	38	1.3	-	-
	12-Aug-08	-	8.41	-	-	-	-	-	-	-	-	-	0.238	0.067	0.007	0.874	-	-	-	-	-	-	-	0.244	0.201	-	35	1.4	-	-
	22-Aug-08 2-Sep-08	-	8.30 8.33	-	-	-	-	-	-	-	-	-	0.151 0.227	0.016	0.002	0.331 0.857	-	-	-	-	-	-	-	0.304	0.165	-	88 68	1.4 1.0	-	-
	23-Sep-08	-	8.08	-	-	-	-	-	-	-	-	-	0.227	0.391	0.008	0.686	-	-	-	-	-	-	-	0.305	0.219	-	120	0.9	-	-
	7-Oct-08	-	8.24	-	-	-	-	-	-	-	-	-	0.375	0.652	0.025	0.583	-	-	-	-	-	-	-	0.401	0.319	-	47	1.4	-	-
	13-Oct-08	-	8.42	-	-	-	-	-	-	-	-	-	0.262	0.482	0.025	0.422	-	-	-	-	-	-	-	0.292	0.245	-	37	1.2	-	-
	7-Nov-08	-	8.43	-	-	-	-	-	-	-	-	-	0.142	0.299	0.009	0.725	-	-	-	-	-	-	-	0.377	0.158	-	200	1.7	-	-
S-34	6-Jun-08	-	8.54	-	-	-	-	-	-	-	-	-	0.108	0.502	0.048	0.105	-	-	-	-	-	-	-	0.233	0.088	-	79	11	-	-
	12-Jun-08	-	8.47	-	-	-	-	-	-	-	-	-	0.094	0.173	0.015	1.020	-	-	-	-	-	-	-	-	0.112	-	120	1.6	-	-
	28-Jun-08	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	120	-	-	-
	11-Jul-08 29-Jul-08	-	8.53 8.40	-	-	-	-	-	-	-	-	-	0.131 0.162	0.069 0.297	0.011	<0.005 0.553	-	-	-	-	-	-	-	0.343 0.271	0.124 0.170	-	300 41	12 1.3	-	-
	12-Aug-08	-	8.40	-	-	-	-	-	-	-	-	-	0.162	0.297	0.007	0.553	-	-	-	-	-	-	-	0.271	0.167	-	41	1.3	-	-
	22-Aug-08	-	8.28	-	-	-	-	-	-	-	-	-	0.220	0.001	0.001	0.359	-	-	-	-	-	-	-	0.362	0.147	-	120	1.4	-	-
	2-Sep-08	-	8.35	-	-	-	-	-	-	-	-	-	0.281	0.394	0.028	0.857	-	-	-	-	-	-	-	0.307	0.225	-	63	1.1	-	-
	23-Sep-08	-	8.07	-	-	-	-	-	-	-	-	-	0.253	0.314	0.013	0.807	-	-	-	-	-	-	-	0.378	0.227	-	89	0.9	-	-
	7-Oct-08	-	8.28	-	-	-	-	-	-	-	-	-	0.387	0.742	0.032	0.573	-	-	-	-	-	-	-	0.418	0.330	-	40	1.4	-	-
	13-Oct-08	-	8.45	-	-	-	-	-	-	-	-	-	0.298	0.593	0.033	0.482	-	-	-	-	-	-		0.336	0.282	-	58	1.3	-	-
	7-Nov-08	-	8.36	-	-	-	-	-	-	-	-	-	0.160	0.263	0.007	0.747	-	-	-	-	-	-	-	0.354	0.146	-	200	1.5	-	-

													Param	eter ⁽²⁾												
Sample No. ⁽¹⁾	Date	Turbidity pH (NTU) (units	E.C. (μS/cm)	Alkalinity as CaCO ₃	Bicarbonate as HCO ₃	Carbonate as CO ₃	Hydroxide as OH	Hardness as CaCO ₃	Chloride - Soluble	Fluoride - Soluble	Ortho- Phosphorus Soluble as P	Ammonia (NH ₃) - Soluble	Unionized Ammonia	Nitrate+ Nitrite-N Soluble	Calcium	Magnesium	Potassium Sodium	Iron	Manganese	D.O.C	Total Phosphorus	Total Dissolved Phosphorus	T.D.S. (Calc.)	T.S.S.	T.K.N. T.O.(C. lon Balance (%)

Notes: "-" = No Data

"-" = No Data	
E.C. = Electrical Conductivity	T.K.N. = Total Kjeldahl Nitrogen
D.O.C. = Dissolved Organic Carbon	T.D.S. = Total Dissolved Solids
T.O.C. = Total Organic Carbon	T.S.S. = Total Suspended Solids

1. See Table NM7-1 for sample location descriptions

2. All values are expressed in milligrams per litre (mg/L) unless indicated otherwise.

3. Guideline for un-ionized ammonia is 0.019 mg/L. Un-ionized ammonia is pH and Temperature dependant. See Factsheet for details. Unionized Ammonia = (f) x (Ammonia), f = 1/(10(pKa - pH) + 1), pKa = 0.09018+2729.92/T, where T = Temperature in Kelvins

4. CCME 2007 - Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines, 1999. Update 7.0 - 2007. Chapter 4 - Aquatic Life

5. Turbidity Guidelines Narrative (see fact sheet for complete details):

Clear Flow:

Maximum increase of 8 NTUs from background levels for a short-term exposure (e.g. 24 hr period).

Maximum average increase of 2 NTUs from background levels for a longer exposure (e.g. 30 d period).

High Flow or Turbid Waters:

Maximum increase of 8 NTUs from background levels at any one time when background levels are between 8 and 80 NTUs.

Should not increase more than 10% of background levels when background is >80 NTUs. 6. Suspended Sediments Guidelines (see fact sheet for complete details):

Clear Flow:

Maximum increase of 25 mg/L from background levels for any short-term exposure (eg. 24 hr period).

Maximum average increase of 5 mg/L from background levels for longer term exposures (eg. Inputs lasting between 24 hrs and 30 days). High Flow:

Maximum increase of 25 mg/L from background levels at any time when background levels are between 25 and 250 mg/L.

Should not increase more than 10% of background levels when background is >250 mg/L.

BOLD - Exceedance of Criteria

TABLE NM7-2 GENERAL WATER QUALITY MARCH 2009 PAGE 7 of 7

TABLE NM7-3 PETROLEUM HYDROCARBONS IN SURFACE WATER RED RIVER FLOODWAY - 2008 SURFACE WATER MONITORING

					Paramet	ter ⁽²⁾				
Sample No. ⁽¹⁾	Date	Benzene	Toluene	Ethyl- benzene	Xylenes (-o,-m,-p)	F1 (C ₆ - C ₁₀)	F2 (C ₁₀ - C ₁₆)	F3 (C ₁₆ - C ₃₄)	F4 (C ₃₄ - C ₅₀)	Total Hydrocarbons (C ₆ - C ₅₀)
Detection Limit		0.5	0.5	0.5	1.5	100	100	250	250	250
CCME ⁽³⁾										
Recreation and Aesthetics	6	-	-	-	-	-	-	-	-	-
Freshwater Aquatic Life		370 (MAC)	2 (MAC)	90 (MAC)	-	-	-	-	-	-
Monthly										
CON D/S (Stn 50+500)	28-Jan-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<250	<250	<250
	25-Feb-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<250	<250	<250
	11-Mar-08	<0.50	1.02	<0.50	<1.5	<100	<100	<250	<250	<250
	25-Apr-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<250	<250	<250
	13-May-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<250	<250	<250
	06-Jun-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<500	<500	<500
(Stn 50+900)	11-Jul-08	<0.50	<0.50	<0.10	<1.5	<100	<100	<500	<500	<100
	12-Aug-08	<0.50	<0.50	<0.50	<0.50	<100	<50	<50	<50	-
	02-Sep-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<500	<500	<500
	07-Oct-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<250	<250	<250
	07-Nov-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<250	<250	<250
	18-Dec-08	<0.5	<0.50	<0.50	<1.5	<100	<100	<250	<250	<250
CON U/S (Stn 11+000)	25-Apr-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<250	<250	<250
	06-Jun-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<500	<500	<500
	11-Jul-08	<0.50	<0.50	<0.10	<1.5	<100	<100	<500	<500	<100
	07-Oct-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<250	<250	<250
	07-Nov-08	<0.50	<0.50	<0.50	<1.5	<100	<100	<250	<250	<250

Notes:

"-" = No Data

1. See Table NM7-1 for sample location descriptions

2. All concentrations in micrograms per litre (µg/L).

 CCME 2005 - Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines Chapter 3 - Canadian Water Quality Guidelines for Recreation and Aesthetics (Update October 2005) - Fact Sheets Chapter 4 - Canadian Water Quality Guidelines for the Protection of Aquatic Life (Update October 2005) - Fact Sheets MAC - Maximum Acceptable Concentration

4. Oil or petrochemicals should not be present in concentrations that:

- Can be detected as a visible film, sheen, or discoloration on the surface;

- Can be detected by odour; or

BOLD

- Can form deposits on shorelines and bottom deposits that are detectable by sight and colour

- Parameter Detected

BOLD & Shaded - Exceedance of Health Related Criteria (MAC)

- · ·			Parameter				
Sample	Use for	Date	Total Coliform ⁽³⁾	E.Coli (3)			
No. ⁽¹⁾	Sorting		CFU/100mL	CFU/100mL			
Detection Limit			10	10			
CCME ⁽²⁾							
Freshwater Aquatic Life			-	-			
Monthly							
CON D/S (Stn 50+500)	CON D/S	28-Jan-08	30	<10			
	CON D/S	25-Feb-08	<10	<10			
	CON D/S	11-Mar-08	<10	130			
	CON D/S	25-Apr-08	>200	3			
	CON D/S	13-May-08	950	100			
(01 50 000)	CON D/S	06-Jun-08	1020	120			
(Stn 50+900)	CON D/S	11-Jul-08	2020 OVERGROWN	1060			
	CON D/S CON D/S	12-Aug-08 02-Sep-08	OVERGROWN	OVERGROWN OVERGROWN			
	CON D/S	07-Oct-08	OVERGROWN	350			
	CON D/S	07-Nov-08	OVERGROWN	80			
	CON D/S	18-Dec-08	260	20			
CON U/S (Stn 11+ 000)	CON U/S	25-Apr-08	<10	<10			
· · · ·	CON U/S	06-Jun-08	810	<10			
	CON U/S	11-Jul-08	3070	10			
	CON U/S	07-Oct-08	1120	20			
	CON U/S	07-Nov-08	OVERGROWN	160			
VEG D/S (Stn 50+500)	VEG D/S	28-Jan-08	30	<10			
	VEG D/S	25-Feb-08	<10	<10			
	VEG D/S	11-Mar-08	<10	130			
	VEG D/S	25-Apr-08	>200	3			
	VEG D/S	13-May-08	950	100			
(0+- 50,000)	VEG D/S	06-Jun-08	1020	120			
(Stn 50+900)	VEG D/S	11-Jul-08	2020	1060			
	VEG D/S	12-Aug-08	OVERGROWN	OVERGROWN OVERGROWN			
	VEG D/S VEG D/S	02-Sep-08 07-Oct-08	OVERGROWN OVERGROWN	350			
	VEG D/S	07-0ct-08	OVERGROWN	80			
	VEG D/S	18-Dec-08	260	20			
VEG U/S (Stn 11+ 000)	VEG U/S	25-Apr-08	<10	<10			
	VEG U/S	06-Jun-08	810	<10			
	VEG U/S	11-Jul-08	3070	10			
	VEG U/S	07-Oct-08	1120	20			
	VEG U/S	07-Nov-08	OVERGROWN	160			
S-05	S-05	06-Jun-08	OVERGROWN	790			
U/S	S-05	06-Jun-08	1080	<10			
	S-05	11-Jul-08	1710	40			
U/S	S-05	11-Jul-08	2190	20			
	S-05	07-Oct-08	OVERGROWN	50			
U/S	S-05	07-Oct-08	OVERGROWN	70			
11/0	S-05	07-Nov-08	OVERGROWN	1200			
U/S	S-05	07-Nov-08	OVERGROWN	20			
S-06	S-06	25-Apr-08	110	10			
U/S	S-06 S-06	13-May-08 13-May-08	590 610	20 <10			
0/3	S-06 S-06	06-Jun-08	OVERGROWN	310			
U/S	S-06	06-Jun-08	1520	720			
0.0	S-06	11-Jul-08	2400	20			
U/S	S-06	11-Jul-08	1830	10			
	S-06	12-Aug-08	OVERGROWN	800			
U/S	S-06	12-Aug-08	OVERGROWN	OVERGROWN			
	S-06	07-Oct-08	OVERGROWN	140			
U/S	S-06	07-Oct-08	OVERGROWN	280			
	S-06	07-Nov-08	OVERGROWN	190			
U/S	S-06	07-Nov-08	OVERGROWN	60			
S-07	S-07	25-Apr-08	60	<10			
U/S	S-07	25-Apr-08	140	<10			
	S-07	13-May-08	650	210			
U/S	S-07	13-May-08	290	20			
	S-07	06-Jun-08	780	70			
S-07 U/S	S-07	06-Jun-08	820	10			
	S-07	11-Jul-08	710	60			
U/S	S-07	11-Jul-08	1290	100			
11/0	S-07	12-Aug-08	OVERGROWN	OVERGROWN			
U/S	S-07	12-Aug-08	OVERGROWN	1060			

		CODMAT 2000	Parameter					
Sample	Use for							
No. ⁽¹⁾	Sorting	Date	Total Coliform (3)	E.Coli (3)				
			CFU/100mL	CFU/100mL				
	S-07	02-Sep-08	OVERGROWN	1200				
U/S	S-07	02-Sep-08	OVERGROWN	160				
	S-07	07-Oct-08	OVERGROWN	370				
U/S	S-07	07-Oct-08	OVERGROWN	340				
	S-07	07-Nov-08	OVERGROWN	10				
U/S	S-07	07-Nov-08	OVERGROWN	50				
S-09	S-09	25-Apr-08	60	<10				
U/S	S-09	25-Apr-08	110	<10				
	S-09	13-May-08	70	<10				
U/S	S-09	13-May-08	210	<10				
	S-09	06-Jun-08	860	80				
U/S	S-09	06-Jun-08	910	230				
	S-09	11-Jul-08	1070	10				
U/S	S-09	11-Jul-08	1490	20				
	S-09	12-Aug-08	1820	80				
U/S	S-09	12-Aug-08	OVERGROWN	OVERGROWN				
11/2	S-09	02-Sep-08	OVERGROWN	290				
U/S	S-09	02-Sep-08	OVERGROWN	1240				
11/0	S-09	07-Oct-08	OVERGROWN	60				
U/S	S-09	07-Oct-08	OVERGROWN	200				
	S-09	07-Nov-08	1150	130				
U/S	S-09	07-Nov-08	1000	100				
S-10	S-10	25-Apr-08	180	<10				
U/S	S-10	25-Apr-08	130	<10				
11/0	S-10	13-May-08	290 730	10				
U/S	S-10	13-May-08		10				
U/S	S-10	06-Jun-08	500	170 240				
0/3	S-10 S-10	06-Jun-08	1310 1480	80				
U/S	S-10	11-Jul-08 11-Jul-08	1480	10				
0/3	S-10	12-Aug-08	OVERGROWN	460				
U/S	S-10	12-Aug-08	OVERGROWN	200				
8,8	S-10	02-Sep-08	OVERGROWN	1040				
	S-10	07-Oct-08	OVERGROWN	40				
U/S	S-10	07-Oct-08	1610	<10				
8,8	S-10	07-Nov-08	OVERGROWN	110				
U/S	S-10	07-Nov-08	OVERGROWN	160				
S-11	S-11	06-Jun-08	1740	10				
	S-11	11-Jul-08	2940	80				
	S-11	12-Aug-08	OVERGROWN	OVERGROWN				
	S-11	02-Sep-08	OVERGROWN	1000				
	S-11	07-Oct-08	OVERGROWN	1290				
	S-11	07-Nov-08	OVERGROWN	180				
S12	S-12	13-May-08	2520	530				
	S-12	06-Jun-08	OVERGROWN	1200				
	S-12	11-Jul-08	2520	680				
	S-12	12-Aug-08	OVERGROWN	OVERGROWN				
	S-12	02-Sep-08	OVERGROWN	1700				
	S-12	07-Oct-08	OVERGROWN	OVERGROWN				
	S-12	07-Nov-08	OVERGROWN	OVERGROWN				
S-13	S-13	30-Jan-08	230	<10				
	S-13	25-Apr-08	110	<10				
	S-13	13-May-08	210	40				
	S-13	06-Jun-08	1070	30				
	S-13	11-Jul-08	250	<10				
	S-13	12-Aug-08	OVERGROWN	OVERGROWN				
	S-13	02-Sep-08	OVERGROWN	290				
	S-13	07-Oct-08	OVERGROWN	340				
	S-13	07-Nov-08	OVERGROWN	230				
	S-13	19-Dec-08	330	<10				
S-14	S-14	30-Jan-08	720	<10				
S-14	S-14	26-Feb-08	<10	<10				
	S-14	12-Mar-08	210	<10				
	S-14	25-Apr-08	180	20				
	S-14	13-May-08	340	<10				
	S-14	06-Jun-08	550	<10				
	S-14	11-Jul-08	670	120				
	S-14	12-Aug-08	2330	340				
	S-14	02-Sep-08	OVERGROWN	30				
	S-14	07-Oct-08	OVERGROWN	830				

			Parameter					
Sample	Use for	D . /		-				
No. (1)	Sorting	Date	Total Coliform (3)	E.Coli (3)				
			CFU/100mL	CFU/100mL				
	S-14	07-Nov-08	OVERGROWN	290				
	S-14	19-Dec-08	370	10				
S-21	S-21	31-Jan-08	OVERGROWN	1670				
	S-21	26-Feb-08	10	<10				
	S-21	12-Mar-08	20	<10				
	S-21	25-Apr-08	>200	>200				
	S-21	13-May-08	OVERGROWN	160				
	S-21	06-Jun-08	OVERGROWN	1270				
	S-21	11-Jul-08	1870	570				
	S-21	12-Aug-08	OVERGROWN	OVERGROWN				
	-	ě						
	S-21	02-Sep-08	OVERGROWN	OVERGROWN				
	S-21	07-Oct-08	OVERGROWN	540				
	S-21	07-Nov-08	1930	260				
	S-21	19-Dec-08	OVERGROWN	OVERGROWN				
S-22	S-22	25-Apr-08	>200	0				
U/S	S-22	25-Apr-08	>200	0				
	S-22	13-May-08	OVERGROWN	<10				
U/S	S-22	13-May-08	OVERGROWN	580				
	S-22	06-Jun-08	OVERGROWN	1500				
U/S	S-22	06-Jun-08	OVERGROWN	OVERGROWN				
	S-22	11-Jul-08	1640	20				
	S-22	12-Aug-08	OVERGROWN	840				
U/S	S-22	12-Aug-08	OVERGROWN	OVERGROWN				
	S-22	02-Sep-08	OVERGROWN	1490				
U/S	S-22	02-Sep-08	OVERGROWN	1350				
5,0	S-22	07-Oct-08	OVERGROWN	230				
U/S	S-22	07-Oct-08	1700	370				
0/0	S-22	07-Nov-08	OVERGROWN	440				
11/0								
U/S	S-22	07-Nov-08	OVERGROWN	1120				
S-23	S-23	31-Jan-08	OVERGROWN	1090				
	S-23	26-Feb-08	10	<10				
	S-23	12-Mar-08	20	<10				
	S-23	25-Apr-08	>200	>200				
	S-23	13-May-08	1400	70				
	S-23	06-Jun-08	1570	340				
	S-23	11-Jul-08	1920	1080				
	S-23	12-Aug-08	OVERGROWN	1220				
	S-23	02-Sep-08	OVERGROWN	OVERGROWN				
	S-23	07-Oct-08	OVERGROWN	1830				
	S-23	07-Nov-08	OVERGROWN	1110				
	S-23	18-Dec-08	840	30				
S-25	S-25	28-Jan-08	30	<10				
	S-25	25-Feb-08	150	<10				
	S-25	25-Apr-08	>200	4				
	S-25	13-May-08	480	30				
	S-25	06-Jun-08	940	130				
	S-25	11-Jul-08	1990	130				
	S-25	12-Aug-08	OVERGROWN 1520	OVERGROWN				
	S-25	02-Sep-08 07-Oct-08	1530 OVERCROWN	640				
	S-25		OVERGROWN	390				
	S-25	07-Nov-08	1710	180				
	S-25	18-Dec-08	840	<10				
S-26	S-26	25-Apr-08	>200	12				
U/S	S-26	25-Apr-08	>200	1				
	S-26	13-May-08	780	20				
U/S	S-26	13-May-08	1790	10				
	S-26	06-Jun-08	OVERGROWN	80				
S-26 U/S	S-26	06-Jun-08	720	<10				
	S-26	11-Jul-08	2160	160				
U/S	S-26	11-Jul-08	1900	120				
	S-26	12-Aug-08	OVERGROWN	OVERGROWN				
U/S	S-26	12-Aug-08	OVERGROWN	OVERGROWN				
5.0	S-26	02-Sep-08	OVERGROWN	1610				
U/S	S-26	02-Sep-08	OVERGROWN	1550				
0/0	S-26	02-3ep-08	OVERGROWN	100				
11/0								
U/S	S-26	07-Oct-08	OVERGROWN	160 20				
	0.00							
	S-26	07-Nov-08	OVERGROWN					
U/S	S-26	07-Nov-08	OVERGROWN	180				
U/S S-27 U/S								

	KIVER FLOODWAT - 20							
Sample	Use for		Parameter					
No. ⁽¹⁾	Sorting	Date	Total Coliform (3)	E.Coli (3)				
	Johns		CFU/100mL	CFU/100mL				
	S-27	13-May-08	1320	<10				
U/S	S-27	13-May-08	840	<10				
	S-27	06-Jun-08	1120	<10				
U/S	S-27	06-Jun-08	320	<10				
	S-27	12-Aug-08	OVERGROWN	OVERGROWN				
U/S	S-27	12-Aug-08	OVERGROWN	420				
	S-27	02-Sep-08	OVERGROWN	410				
U/S	S-27	02-Sep-08	OVERGROWN	410				
	S-27	07-Oct-08	OVERGROWN	30				
U/S	S-27	07-Oct-08	580	<10				
0,0	S-27	07-Nov-08	500	<10				
U/S	S-27	07-Nov-08	OVERGROWN	1020				
S-28	S-27							
		28-Jan-08	50	<10				
Field Dup.	S-28	28-Jan-08	40	<10				
E. LI D. J	S-28	25-Feb-08	10	<10				
Field Dup.	S-28	25-Feb-08	<10	<10				
	S-28	11-Mar-08	<10	10				
Field Dup.	S-28	11-Mar-08	<10	60				
	S-28	25-Apr-08	>200	6				
Field Dup.	S-28	25-Apr-08	>200	8				
	S-28	13-May-08	1300	40				
Field Dup.	S-28	13-May-08	1380	60				
	S-28	06-Jun-08	950	490				
Field Dup.	S-28	06-Jun-08	680	210				
	S-28	11-Jul-08	1910	680				
Field Dup.	S-28	11-Jul-08	1560	790				
	S-28	12-Aug-08	OVERGROWN	OVERGROWN				
Field Dup.	S-28	12-Aug-08	OVERGROWN	OVERGROWN				
r iola Dapi	S-28	02-Sep-08	OVERGROWN	1070				
Field Dup.	S-28	02-Sep-08	OVERGROWN	1280				
riola Dap.	S-28	07-Oct-08	OVERGROWN	400				
Field Dup.	S-28	07-Oct-08	OVERGROWN	590				
Fleid Dup.								
Field Dur	S-28	07-Nov-08	1430	20				
Field Dup.	S-28	07-Nov-08	OVERGROWN	160				
	S-28	18-Dec-08	360	<10				
Field Dup.	S-28	18-Dec-08	270	20				
S-30	S-30	28-Jan-08	1030	370				
	S-30	25-Feb-08	630	260				
	S-30	11-Mar-08	210	1060				
	S-30	25-Apr-08	>200	>200				
	S-30	13-May-08	1550	510				
	S-30	06-Jun-08	540	<10				
	S-30	11-Jul-08	1280	300				
	S-30	12-Aug-08	OVERGROWN	230				
	S-30	02-Sep-08	OVERGROWN	120				
	S-30	07-Oct-08	OVERGROWN	150				
	S-30	07-Nov-08	OVERGROWN	OVERGROWN				
	S-30	18-Dec-08	1310	200				
S-31	S-31	28-Jan-08	1030	310				
	S-31	25-Feb-08	790	240				
	S-31	11-Mar-08	280	1340				
	S-31	25-Apr-08	>200	>200				
	S-31	13-May-08	1010	310				
S-31	S-31	06-Jun-08	1010	<10				
5-51								
	S-31	11-Jul-08		140				
	S-31	12-Aug-08	OVERGROWN	70				
	S-31	02-Sep-08	OVERGROWN	150				
	S-31	07-Oct-08	OVERGROWN	130				
	S-31	07-Nov-08	OVERGROWN	OVERGROWN				
	S-31	18-Dec-08	490	110				
S-32	S-32	28-Jan-08	1160	470				
	S-32	25-Feb-08	430	120				
	S-32	11-Mar-08	300	1450				
	S-32	25-Apr-08	>200	>200				
	S-32	13-May-08	1490	430				
	S-32	06-Jun-08	370	<10				
	S-32	11-Jul-08	1430	80				
	S-32	12-Aug-08	OVERGROWN	70				
	S-32	02-Sep-08	OVERGROWN	130				
	S-32	07-Oct-08	OVERGROWN	150				
	0-32	07-001-00	OVERGROWN	130				

Sample	Use for		Parameter				
No. ⁽¹⁾	Sorting	Date	Total Coliform (3)	E.Coli (3)			
NO.	Conting		CFU/100mL	CFU/100mL			
	S-32	07-Nov-08	OVERGROWN	OVERGROWN			
	S-32	18-Dec-08	OVERGROWN	220			
S-33	S-33	28-Jan-08	950	290			
	S-33	25-Feb-08	620	290			
	S-33	11-Mar-08	310	1000			
	S-33	25-Apr-08	>200	>200			
	S-33	13-May-08	1670	490			
	S-33	06-Jun-08	280	<10			
	S-33	11-Jul-08	1340	60			
	S-33	12-Aug-08	OVERGROWN	80			
	S-33	02-Sep-08	OVERGROWN	110			
	S-33	07-Oct-08	OVERGROWN	70			
	S-33	07-Nov-08	OVERGROWN	OVERGROWN			
	S-33	18-Dec-08	620	140			
S-34	S-34	28-Jan-08	750	270			
	S-34	25-Feb-08	1090	540			
	S-34	11-Mar-08	420	1740			
	S-34	25-Apr-08	>200	>200			
	S-34	13-May-08	1370	280			
	S-34	06-Jun-08	510	<10			
	S-34	11-Jul-08	1020	120			
	S-34	12-Aug-08	OVERGROWN	50			
	S-34	02-Sep-08	OVERGROWN	90			
	S-34	07-Oct-08	OVERGROWN	80			
	S-34	07-Nov-08	OVERGROWN	130			
	S-34	18-Dec-08	910	110			
S-35	S-35	25-Apr-08	350	<10			
	S-35	07-Oct-08	OVERGROWN	10			
	S-35	07-Nov-08	OVERGROWN	190			
S-36	S-36	25-Apr-08	210	<10			
	S-36	13-May-08	430	<10			
	S-36	06-Jun-08	420	<10			
	S-36	07-Nov-08	OVERGROWN	240			

Notes:

"-" = No Data

1. See Table NM7-1 for sample location descriptions

 CCME 2007 - Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines, 1999. Update 7.0 - 2007.

Chapter 4 -Aquatic Life

3. Half of the April 25 samples were processed by Quanti-Tray (QT) with a detection limit of 0 and upper count of 200 in units of Most Probabable Number (MPN)/100 mL and included sampling sites S-21, S-22, S-22 U/S, S-23, S-25, S-26, S-26 U/S, S-27, S-27 U/S, S-99, S-28, CON D/S, S-30, S-31, S-32, S-33 and S-34.

BOLD

- Exceedance of Criteria

Sample No. ⁽¹⁾		Parameter ⁽²⁾									
	Date	2,4-D	AMPA	Bromoxynil	Dicamba	Glyphosate	MCPA	Picloram			
EQL		0.1	1	0.1	0.1	1	0.1	0.1			
CCME ⁽³⁾											
Freshwater Aquatic Life		4	-	5	10	65	2.6	29			
VEG D/S (Stn 50+500)	25-Apr-08	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1			
VEG U/S (Stn 11+000)	25-Apr-08	<0.1	<1	<0.1	<0.1	<1	<0.1	<0.1			

Notes:

"-" = No Data

EQL = Estimated Quantitation Limit = The lowest level of the parameter that can be quantified with confidence

1. See Table NM7-1 for sample location descriptions

2. All values are expressed in micrograms per lite (μ g/L).

3. CCME 2003 - Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines, 1999. Update 7.0 - 2007. Guidelines for Canadian Drinking Water Quality.

Chapter 4 - Aquatic Life

TABLE NM7-6 LEVEL I EVENT BASED TSS MONITORING REVIEW **RED RIVER FLOODWAY - 2008 SURFACE WATER MONITORING**

	Amount of				Estimated						Actual						
	Precipitation		Year	Floodway -	Downstream	of Construction	Red Riv	er - Downs	stream of Outlet	Change in Red	Floodway -	Downstream	of Construction	Red Riv	ver - Down	stream of Outlet	Change in Red
Sample Date	(mm) for the Monitoring Event ¹	Duration (hrs)	Storm ²	Flow (cms)	TSS (mg/L)	Sediment Load (tonne/day)	Flow (cms)	TSS (mg/L)	Sediment Load (tonne/day)	River Sediment Concentration (%)	Flow (cms)	TSS (mg/L)	Sediment Load (tonne/day)	Flow (cms)	TSS (mg/L)	Sediment Load (tonne/day)	River Sediment Concentration (%)
13-May-08	20.0 - 24.0	11.0	<2	1.12	15.2	1.5	344.05	108.7	3,232	-0.28%	1.12	5	0.5	314.76	77	2,094	-0.33%
26-May-08	7.0 - 11.0	11.0	<2	3.65	26.1	8.2	302.99	70.2	1,836	-0.75%	3.65	24	7.6	205.93	54	961	-0.97%
06-Jun-08	23.9 - 53.0	9.0	<2 - <5	2.26	825.6	161.2	155.70	52.5	706	21.08%	2.26	1700	331.9	166.76	54	778	40.76%
09-Jun-08	12.2 - 26.0	18.5	<2	3.08	58.1	15.5	155.70	61.2	823	-0.10%	3.08	62	16.5	210.82	53	965	0.24%
12-Jun-08	11.5 - 17.0	6.5	<2	4.64	20.5	8.2	155.70	81.4	1,095	-2.16%	4.64	9	3.6	254.88	63	1,387	-1.53%
28-Jun-08	14.0 - 24.0	10.5	<2	1.79	132.6	20.5	506.90	162.0	7,093	-0.06%	1.79	150	23.2	436.53	170	6,412	-0.05%
11-Jul-08	3.8 - 21.0	3.0	<2	0.57	36.4	1.8	191.99	126.7	2,101	-0.21%	0.57	44	2.2	186.83	72	1,162	-0.12%
29-Jul-08	5.3 - 20.3	1.5	<2	0.57	85.6	4.2	146.39	50.9	643	0.26%	0.57	77	3.8	149.45	38	491	0.39%
12-Aug-08	17.5 - 80.0	28.0	<2 - <5	0.57	34.1	1.7	147.25	47.7	607	-0.11%	0.57	28	1.4	130.68	35	395	-0.09%
22-Aug-08	0.5 - 26.4	9.0	<2	0.57	53.0	2.6	142.43	90.7	1,116	-0.17%	0.57	51	2.5	140.31	88	1,067	-0.17%
02-Sep-08	14.6 - 29.0	4.5	<2	0.26	44.2	1.0	127.43	82.3	906	-0.09%	0.26	300	6.7	135.53	68	796	0.65%
23-Sep-08	8.7 - 33.8	16.5	<2	0.96	135.2	11.2	160.84	174.5	2,426	-0.13%	0.96	140	11.6	187.56	120	1,945	0.08%
07-Oct-08	8.0 - 19.0	12.5	<2	1.17	61.9	6.3	127.43	53.4	588	0.14%	1.17	57	5.8	109.23	47	444	0.22%
13-Oct-08	19.1 - 33.0	12.0	<2	2.65	51.4	11.8	87.38	33.6	254	1.56%	2.65	58	13.3	148.88	37	476	0.99%
07-Nov-08	11.4 - 52.3	48.0	<2	0.96	42.2	3.5	344.05	177.9	5,289	-0.21%	0.96	36	3.0	371.80	200	6,425	-0.21%

Notes:

1 - Amount of precipitation measured varied between the different weather stations

2 - Year Storm is an approximate calculation based on the Atmospheric Environment Service, Rainfall Intensity - Duration Frequency Values for the Winnipeg Int'l Airport and recorded precipitation at the unofficial rain gauge sites

5 = Laboratory value is <5

TABLE NM7-7 FLOODWAY OUTLET TSS MONITORING RED RIVER FLOODWAY - 2008 SURFACE WATER MONITORING

- (1)			Field Data	Parameter	
Sample No. ⁽¹⁾	Date Time		Turbidity (NTU) (2)	TSS (mg/L) ⁽³⁾	
Detection Limit				5	
CCME ⁽⁴⁾					
Freshwater Aquatic Life				(4)	
•				. ,	
TSS Monitoring		40.00			
S-34	14-Mar-08	10:00	8.56	6	
S-30	14-Mar-08	10:15	7.75	13	
S-31	14-Mar-08	10:40	15.52	7	
<u>S-33</u> S-34	14-Mar-08	11:15	8.05	9	
	14-Mar-08	13:00	8.76	<u><5</u> 7	
S-30	14-Mar-08	13:15	9.35		
S-31	14-Mar-08	13:30	12.09 10.79	6	
<u>S-33</u> S-34	14-Mar-08	14:00 16:45	10.79	<u><5</u> 9	
<u> </u>	14-Mar-08 14-Mar-08	16:45	10.44	9 <5	
S-30 S-31	14-Mar-08	16:30	12.04		
S-31	14-Mar-08	16:00	11.33	9	
<u> </u>	17-Mar-08	10:31	10.47	85	
<u> </u>	17-Mar-08	10:44	19.33	17	
S-31	17-Mar-08	10:56	12.85	17	
S-33	17-Mar-08	11:10	17.47	20	
S-34	17-Mar-08	13:30	10.15	45	
<u>S-30</u>	17-Mar-08	13:40	11.24	18	
S-31	17-Mar-08	13:51	10.56	9	
S-33	17-Mar-08	14:00	9.70	8	
S-34	17-Mar-08	18:00	10.31	9	
<u> </u>	17-Mar-08	18:10	9.48	5	
S-31	17-Mar-08	18:20	10.11	<5	
S-33	17-Mar-08	18:30	10.53	5	
S-34	18-Mar-08	10:30	8.29	5	
S-30	18-Mar-08	10:42	8.34	5	
S-31	18-Mar-08	10:50	8.43	<5	
S-33	18-Mar-08	11:05	9.37	8	
S-34	18-Mar-08	13:20	9.55	11	
S-30	18-Mar-08	13:40	8.07	10	
S-31	18-Mar-08	13:48	5.61	9	
S-33	18-Mar-08	14:00	5.30	7	
S-34	18-Mar-08	17:30	8.55	7	
S-30	18-Mar-08	17:36	8.64	6	
S-31	18-Mar-08	17:45	8.18	13	
S-33	18-Mar-08	18:00	8.94	8	
S-34	19-Mar-08	10:57	7.00	5	
S-30	19-Mar-08	11:10	6.88	<5	
S-31	19-Mar-08	11:50	7.12	<5	
S-33	19-Mar-08	12:07	7.95	6	
S-34	19-Mar-08	17:15	10.98	<5	
S-30	19-Mar-08	17:28	8.82	6	
S-31	19-Mar-08	17:55	8.12	5	
S-33	19-Mar-08	18:17	9.55	6	
S-34	20-Mar-08	10:00	12.38	9	
S-30	20-Mar-08	10:10	13.58	8	
S-31	20-Mar-08	10:21	12.18	9	
S-33	20-Mar-08	10:40	10.86	6	

TABLE NM7-7 FLOODWAY OUTLET TSS MONITORING RED RIVER FLOODWAY - 2008 SURFACE WATER MONITORING

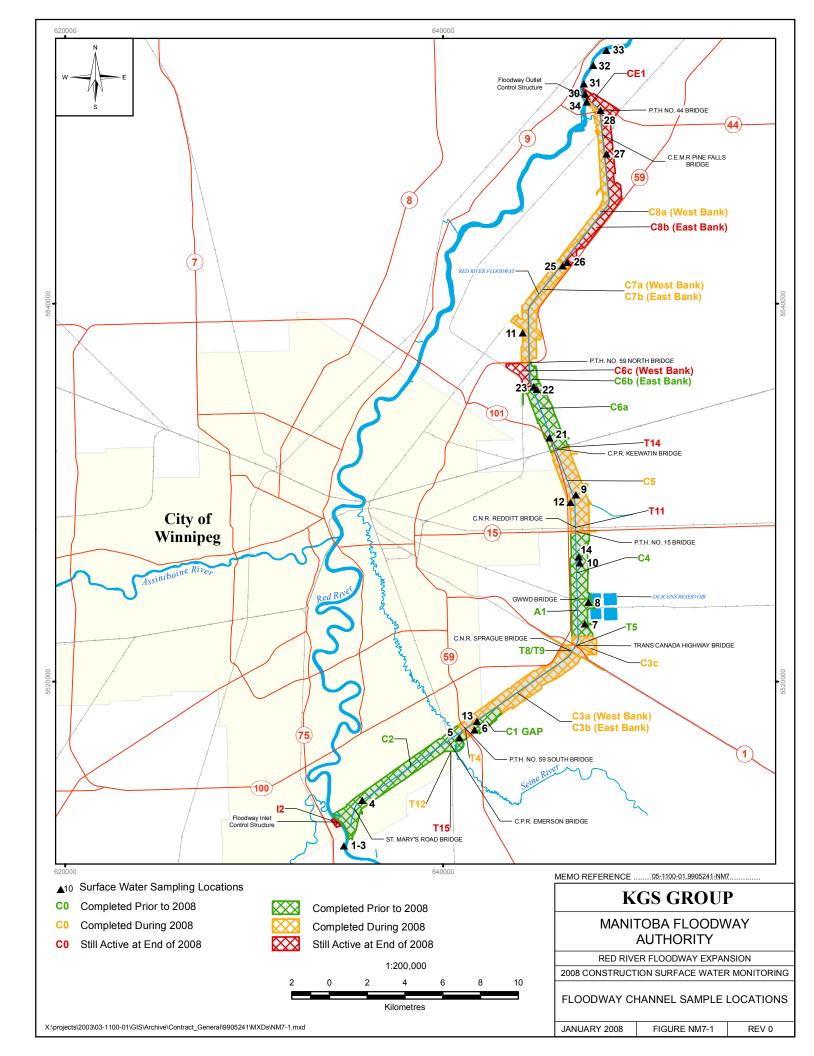
(1)			Field Data	Parameter		
Sample No. ⁽¹⁾	Date	Time	Turbidity (NTU) (2)	TSS (mg/L) ⁽³⁾		
Detection Limit				5		
CCME ⁽⁴⁾						
Freshwater Aquatic Life				(4)		
TSS Monitoring						
S-34	20-Mar-08	13:30	11.76	8		
<u> </u>	20-Mar-08	13:40	11.33	5		
S-31	20-Mar-08	13:58	11.98	6		
S-33	20-Mar-08	14:10	11.81	10		
S-34	20-Mar-08	17:30	10.62	8		
<u> </u>	20-Mar-08	17:40	10.78	6		
S-31	20-Mar-08	17:50	10.65	7		
S-33	20-Mar-08	18:00	11.50	9		
<u> </u>	21-Mar-08	10:00	9.86	7		
<u> </u>	21-Mar-08	10:00	9.62	5		
<u> </u>	21-Mar-08	10:15	9.54	7		
S-33	21-Mar-08	10:15	9.70	8		
<u> </u>	21-Mar-08	13:15	10.66	7		
<u> </u>	21-Mar-08	13:25	10.56	8		
S-31	21-Mar-08	13:35	10.71	6		
S-33	21-Mar-08	13:45	10.26	10		
S-34	21-Mar-08	17:15	11.87	9		
<u> </u>	21-Mar-08	17:25	11.52	7		
S-31	21-Mar-08	17:35	11.78	9		
S-33	21-Mar-08	17:50	10.80	<u> </u>		
S-34	22-Mar-08	10:00	11.76	12		
<u> </u>	22-Mar-08	10:08	10.93	13		
S-31	22-Mar-08	10:08	10.64	10		
S-33	22-Mar-08	10:31	10.56	10		
S-34	22-Mar-08	14:00	11.74	7		
<u> </u>	22-Mar-08	14:10	11.74	6		
<u> </u>	22-Mar-08	14:20	11.32	6		
S-33	22-Mar-08	14:30	10.79	7		
<u> </u>	23-Mar-08	10:30	10.31	5		
S-30	23-Mar-08	10:30	17.41	9		
<u> </u>	23-Mar-08	10:40	10.79	5		
<u> </u>	23-Mar-08	11:05	10.79	5		
S-34	23-Mar-08	13:00	10.07	6		
<u> </u>	23-Mar-08	13:10	12.30	10		
<u> </u>	23-Mar-08	13:20	11.56	7		
S-31	23-Mar-08	13:20	9.99	8		
<u> </u>	23-Mar-08	10:15	9.53	5		
<u> </u>	24-Mar-08	10:15	9.53	10		
<u> </u>	24-Mar-08	10:25	8.99	10		
S-33	24-Mar-08	10:35	10.11	5		
S-34	24-Mar-08	13:18	9.26	8		
<u> </u>	24-Mar-08	13:24	10.14	7		
S-31	24-Mar-08	13:32	9.86	9		
S-33	24-Mar-08	13:49	9.00	8		
S-34	24-Mar-08	17:16	9.72	7		
S-30	24-Mar-08	17:10	10.31	7		
<u> </u>	24-Mar-08	17:32	11.05	11		
S-33	24-Mar-08	17:32	10.13	15		

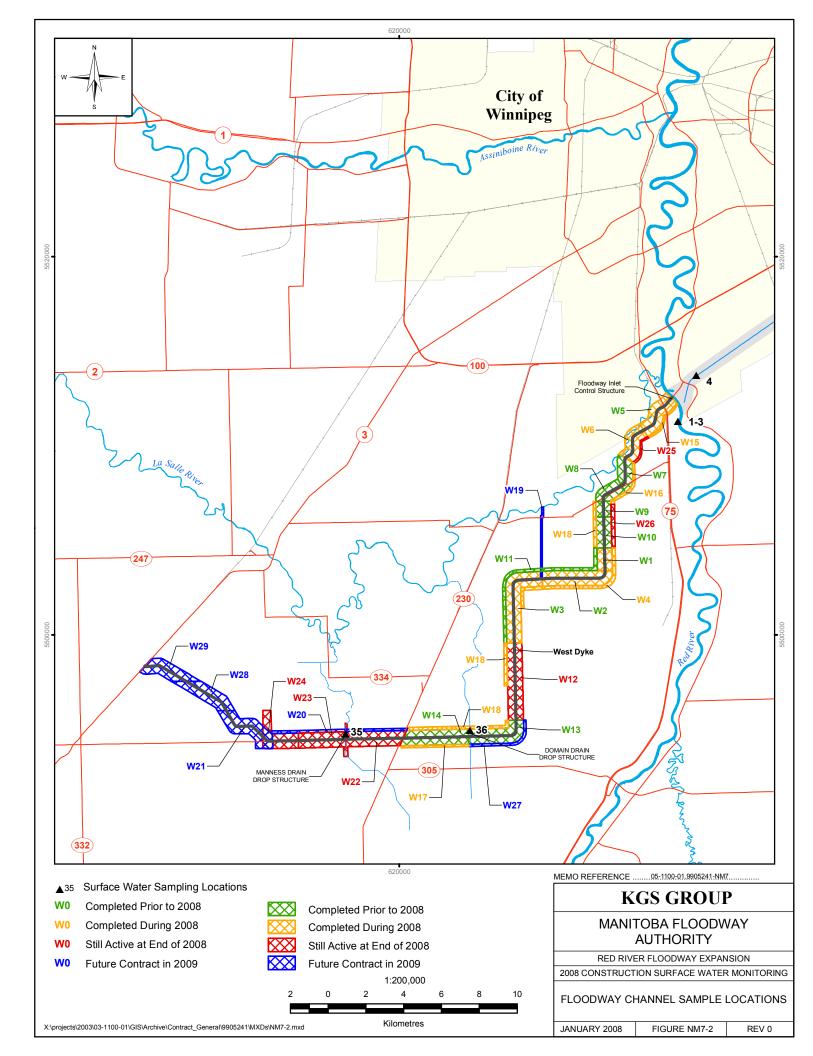
TABLE NM7-7 FLOODWAY OUTLET TSS MONITORING RED RIVER FLOODWAY - 2008 SURFACE WATER MONITORING

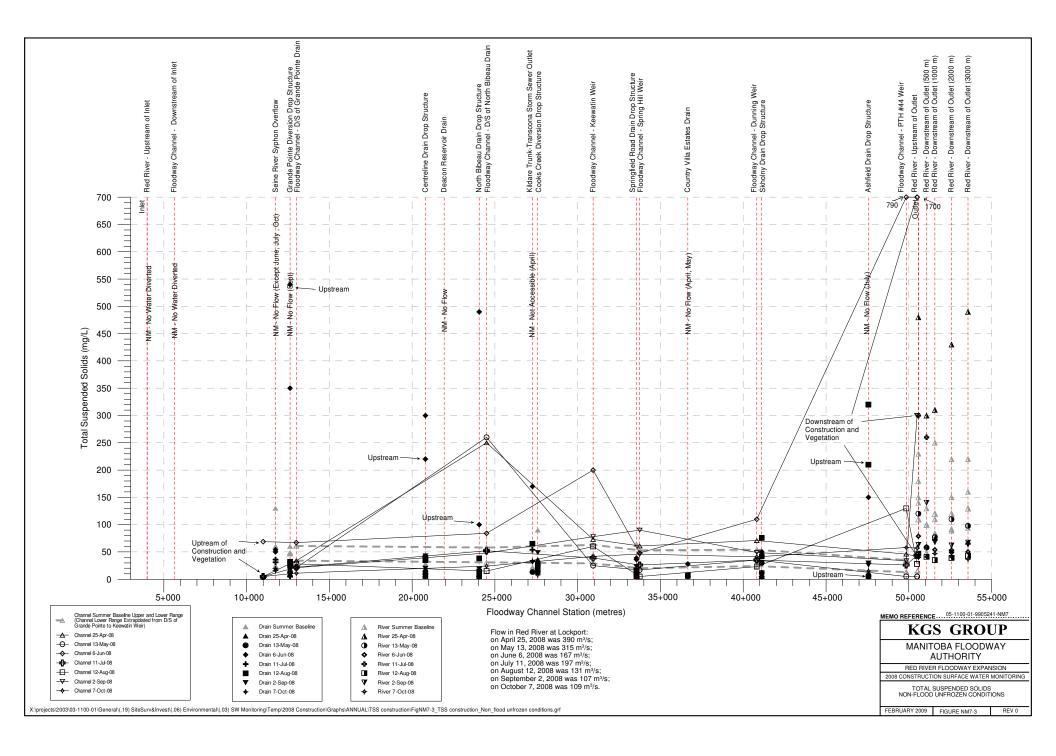
	Dete	Time	Field Data	Parameter		
Sample No. ⁽¹⁾	Date	Time	Turbidity (NTU) (2)	TSS (mg/L) ⁽³⁾		
Detection Limit				5		
CCME ⁽⁴⁾						
Freshwater Aquatic Life				(4)		
TSS Monitoring						
S-34	25-Mar-08	9:04	8.39	<5		
S-30	25-Mar-08	9:07	8.64	5		
S-31	25-Mar-08	9:10	8.07	5		
S-33	25-Mar-08	9:15	11.04	8		
S-34	26-Mar-08	9:30	8.86	6		
S-30	26-Mar-08	9:50	8.13	8		
S-31	26-Mar-08	10:30	8.92	6		
S-33	26-Mar-08	11:00	10.83	9		
S-34	27-Mar-08	9:30	8.64	8		
S-30	27-Mar-08	9:40	10.55	11		
S-31	27-Mar-08	10:20	9.19	9		
S-33	27-Mar-08	10:45	12.79	12		
S-34	28-Mar-08	9:15	8.52	8		
S-30	28-Mar-08	9:37	9.05	5		
S-31	28-Mar-08	10:15	9.77	10		
S-33	28-Mar-08	10:45	12.06	9		
S-34	29-Mar-08	8:30	8.59	<5		
S-30	29-Mar-08	8:35	7.83	<5		
S-31	29-Mar-08	8:39	7.81	<5		
S-33	29-Mar-08	8:42	10.16	9		
S-34	30-Mar-08	9:15	11.00	6		
S-30	30-Mar-08	9:40	22.73	13		
S-31	30-Mar-08	10:20	21.68	11		
S-33	30-Mar-08	11:00	13.08	6		
S-34	31-Mar-08	11:30	22.91	14		
S-30	31-Mar-08	-		-		
S-31	31-Mar-08	13:15	23.27	17		
S-33	31-Mar-08	12:45	20.44	23		

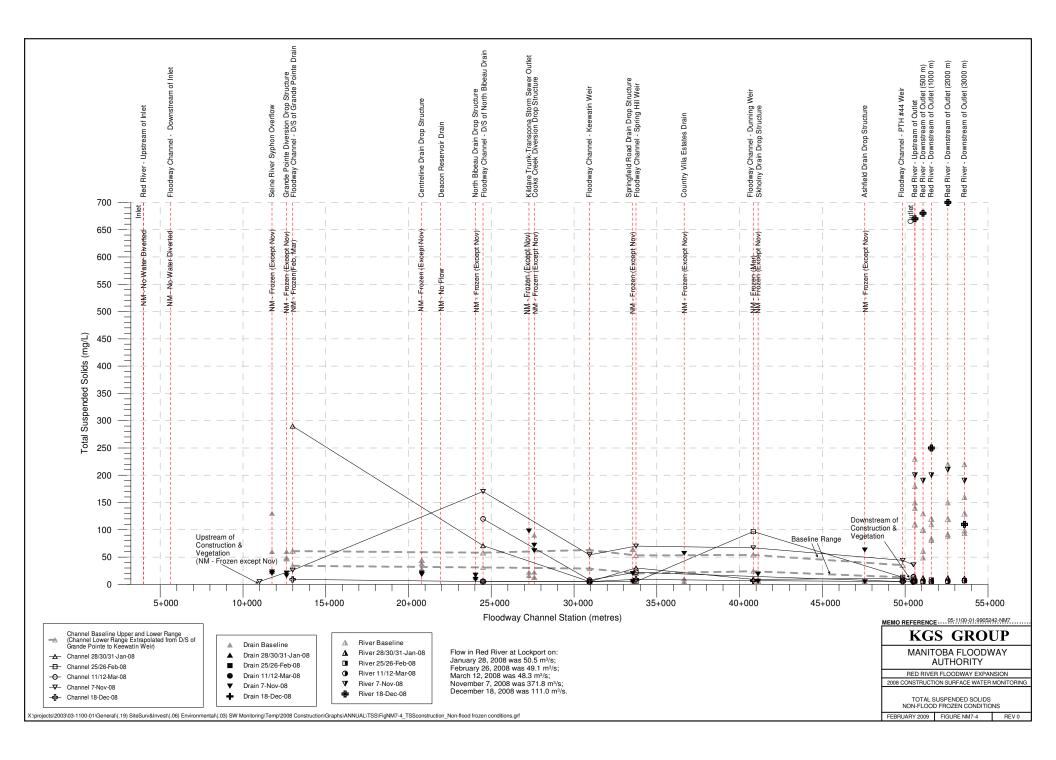
Notes:

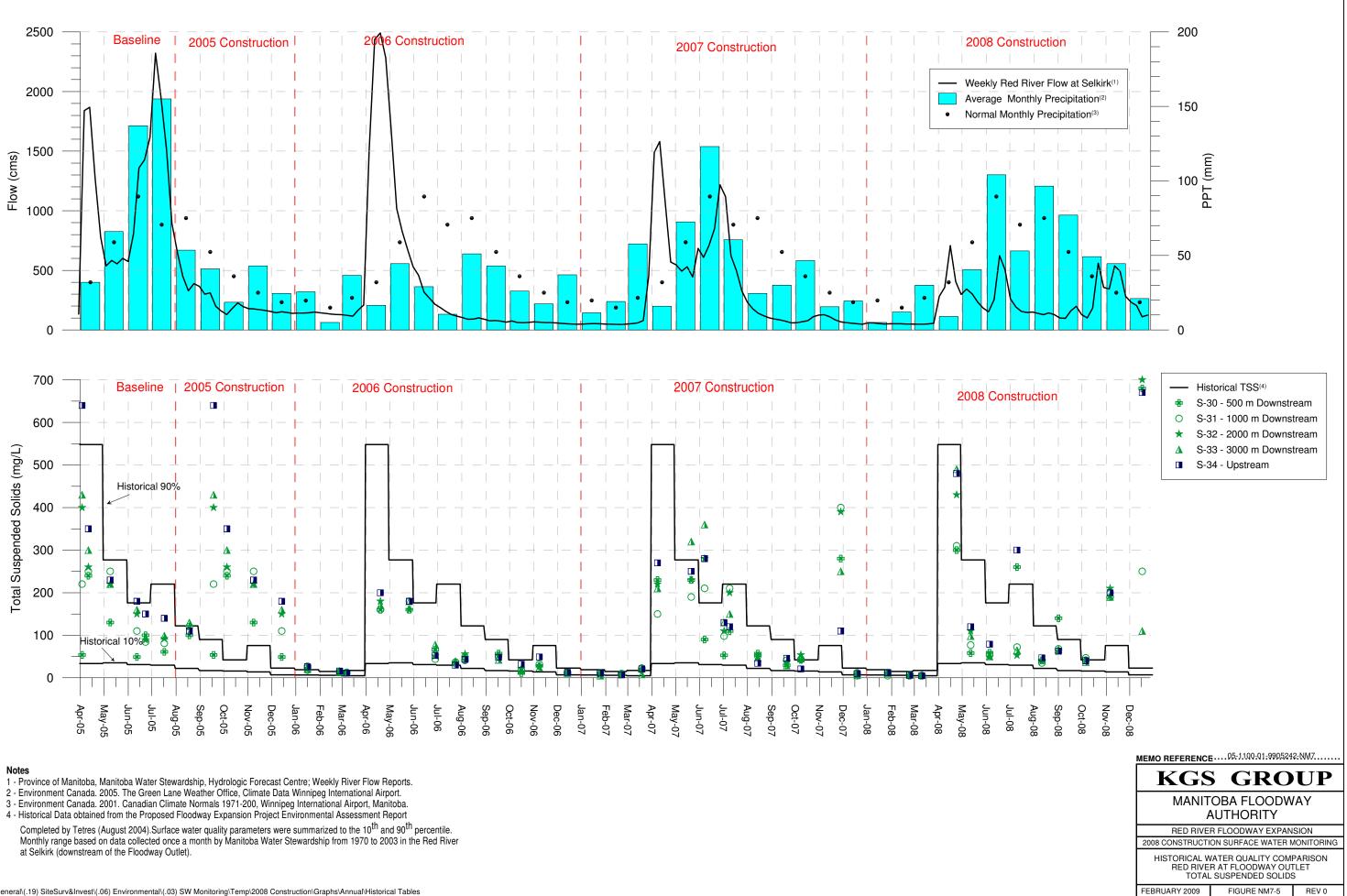
1. See Table NM7-1 for sample location descriptions.

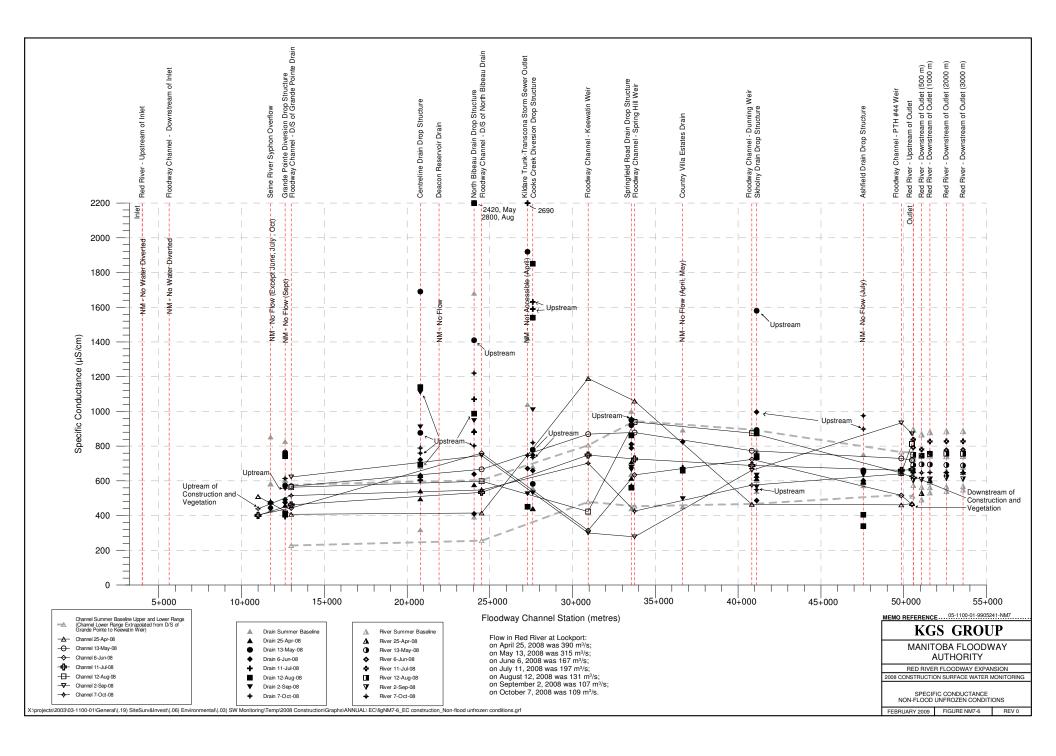

- 2. Turbidity values are an average of three replicate samples.
- 3. Suspended Sediments Guidelines Narrative (see fact sheet for complete details):
- Clear Flow:
 - Maximum increase of 25 mg/L from background levels for any short-term exposure (eg. 24 hr period).
 - Maximum average increase of 5 mg/L from background levels for longer term exposures (eg. Inputs
 - lasting between 24 hrs and 30 days).
- Maximum increase of 25 mg/L from background levels at any time when background levels are between 25 and 250 mg/L. High Flow:
 - Maximum increase of 25 mg/L from background levels at any time when background levels are between 25 and 250 mg/L. Should not increase more than 10% of background levels when background is >250 mg/L.
- 4. CCME 2007 Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines, 1999. Update 7.0 2007.

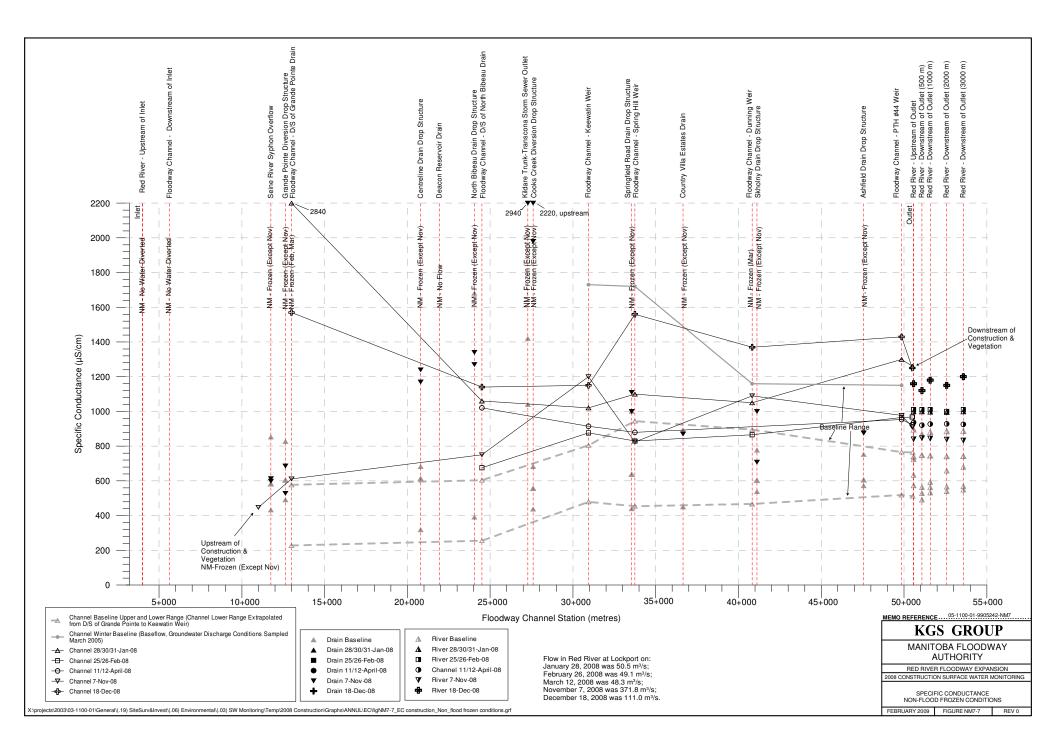

Chapter 4 -Aquatic Life BOLD

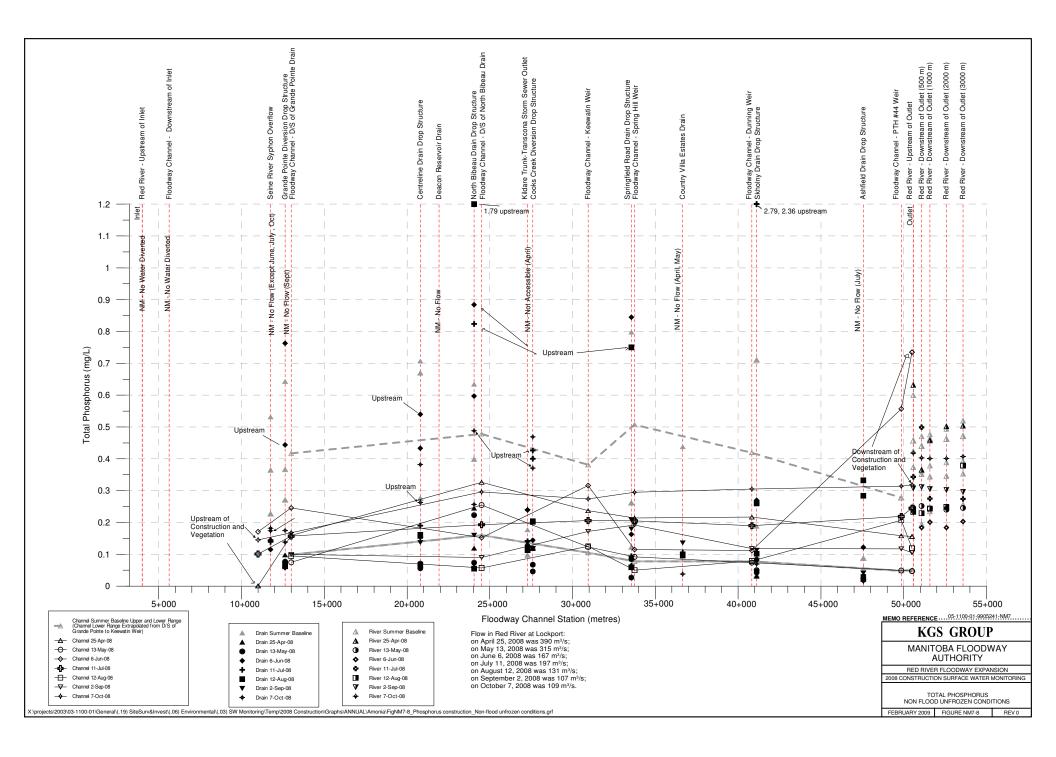

- Exceedance of Criteria

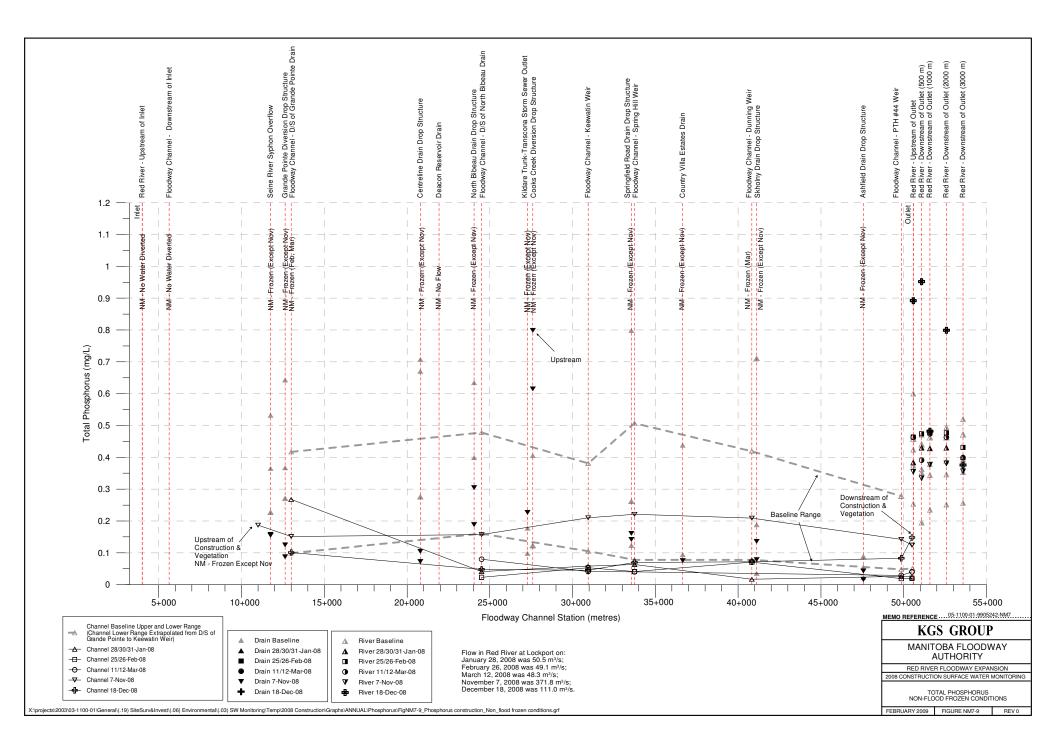

FIGURES

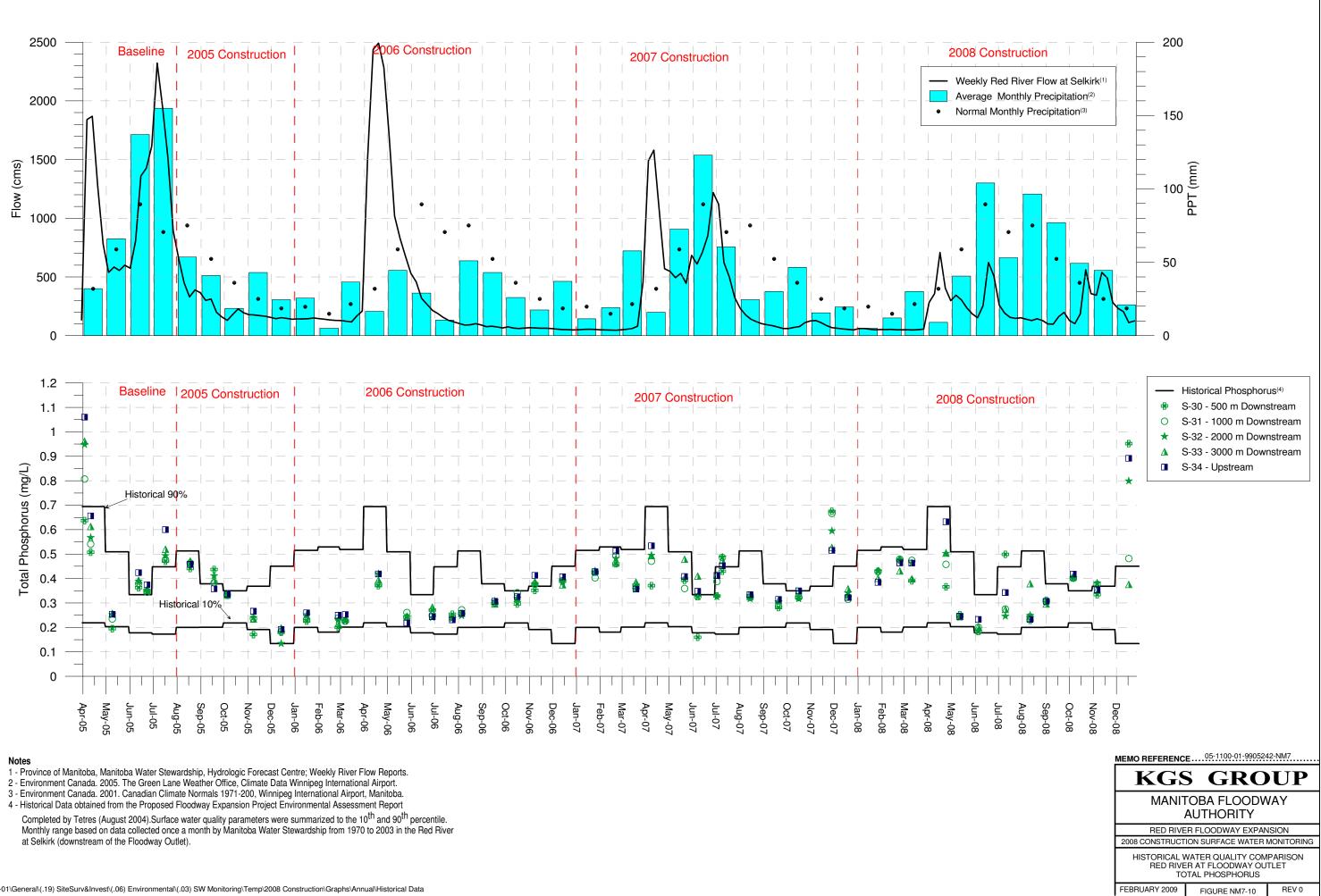


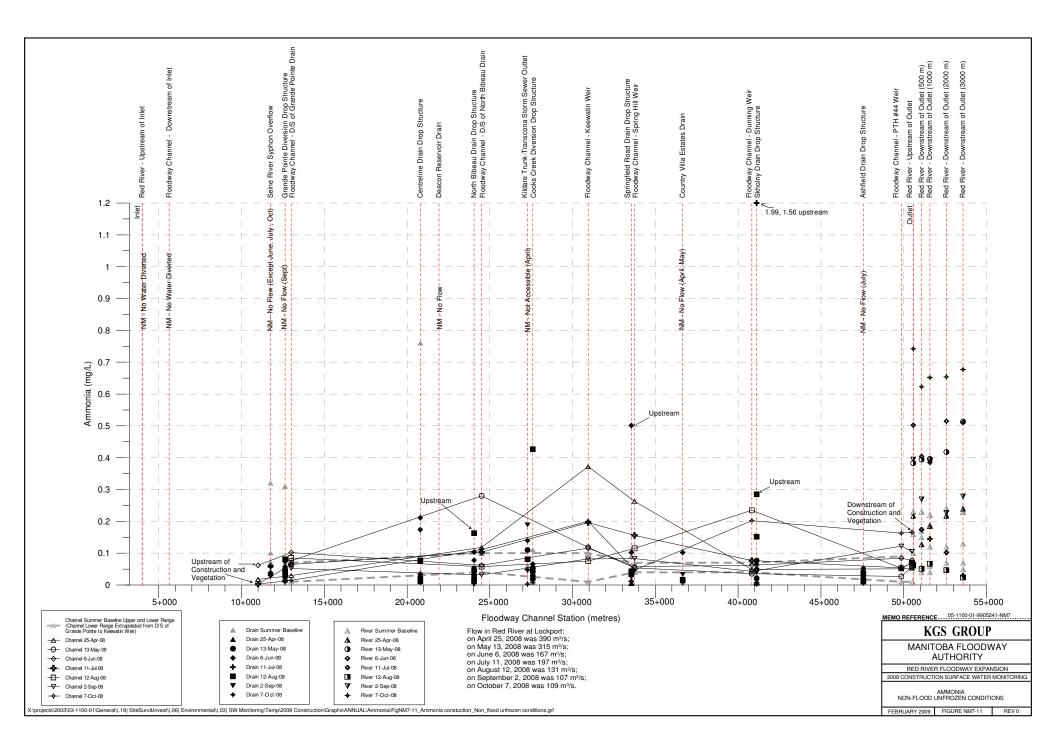


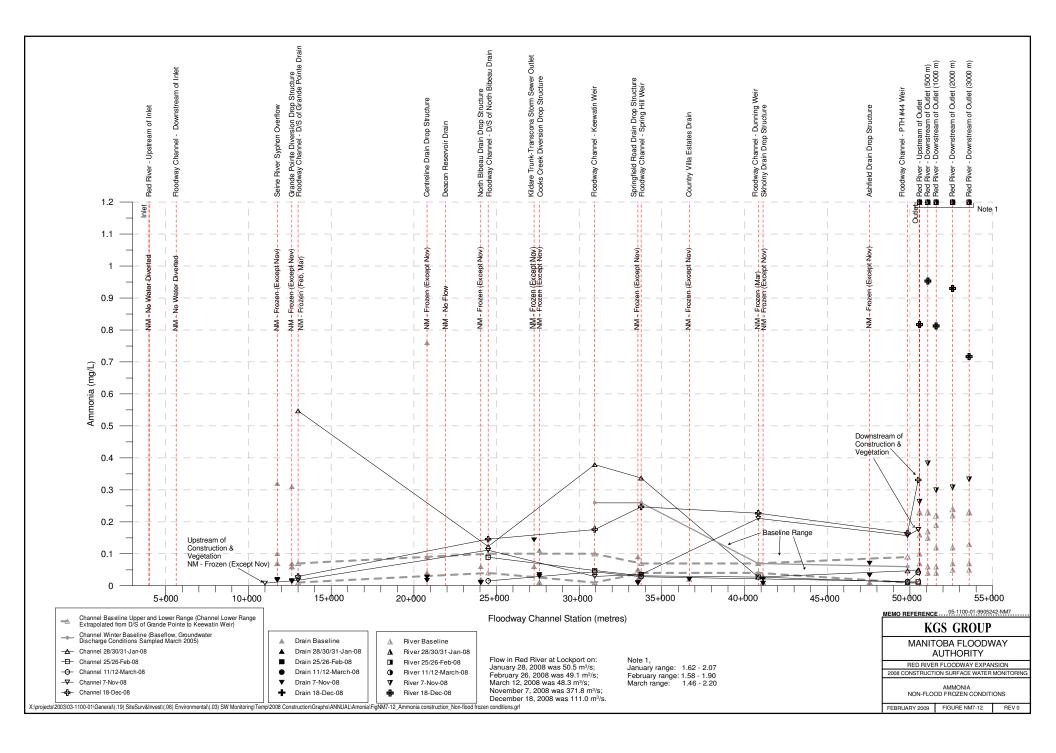


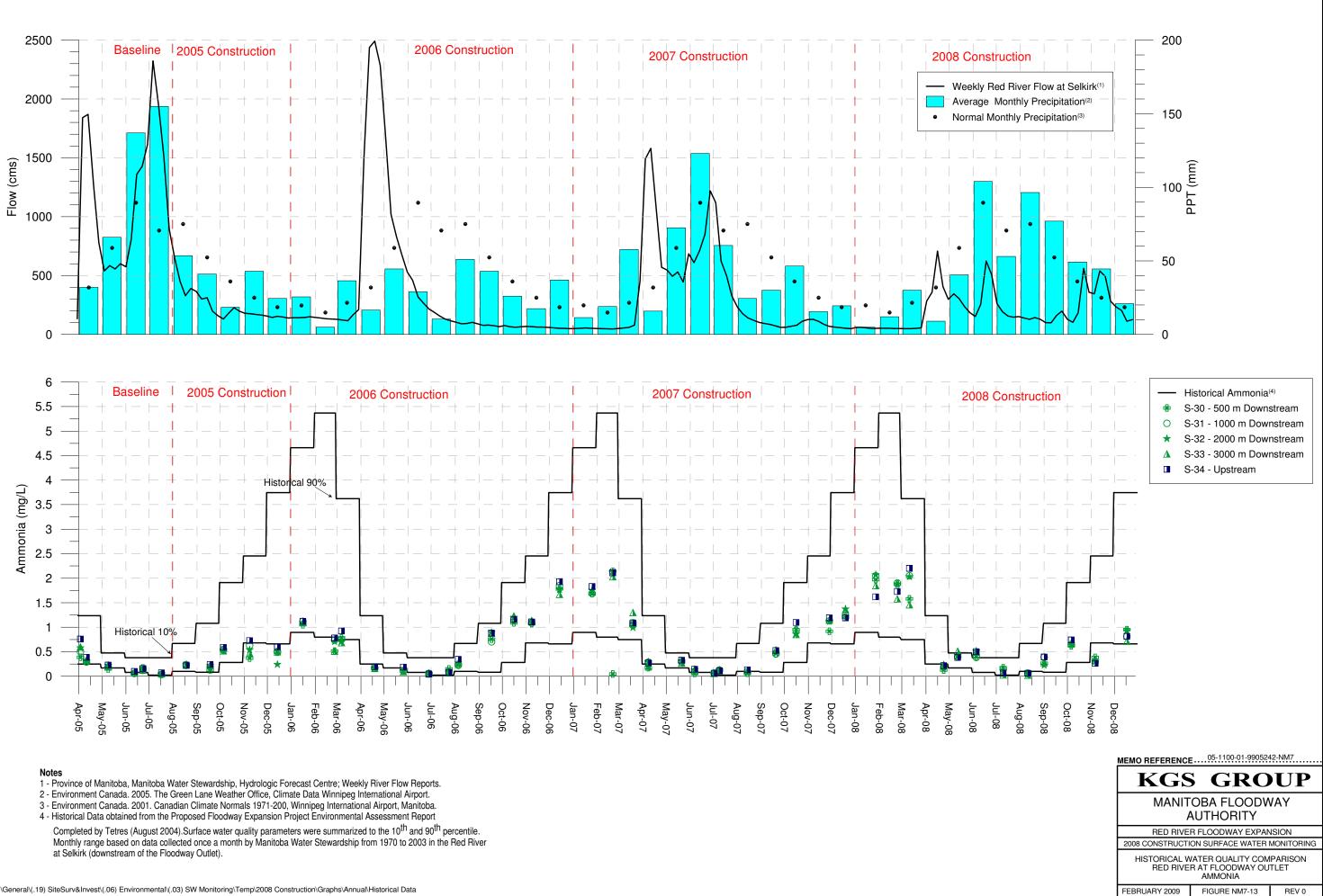


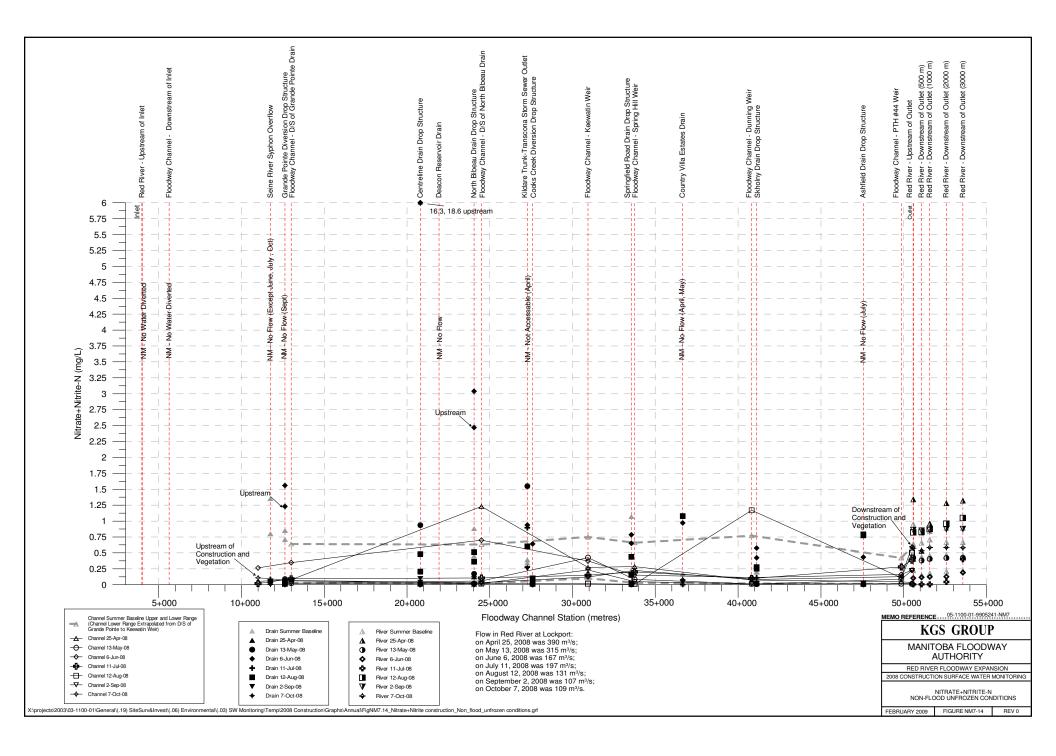


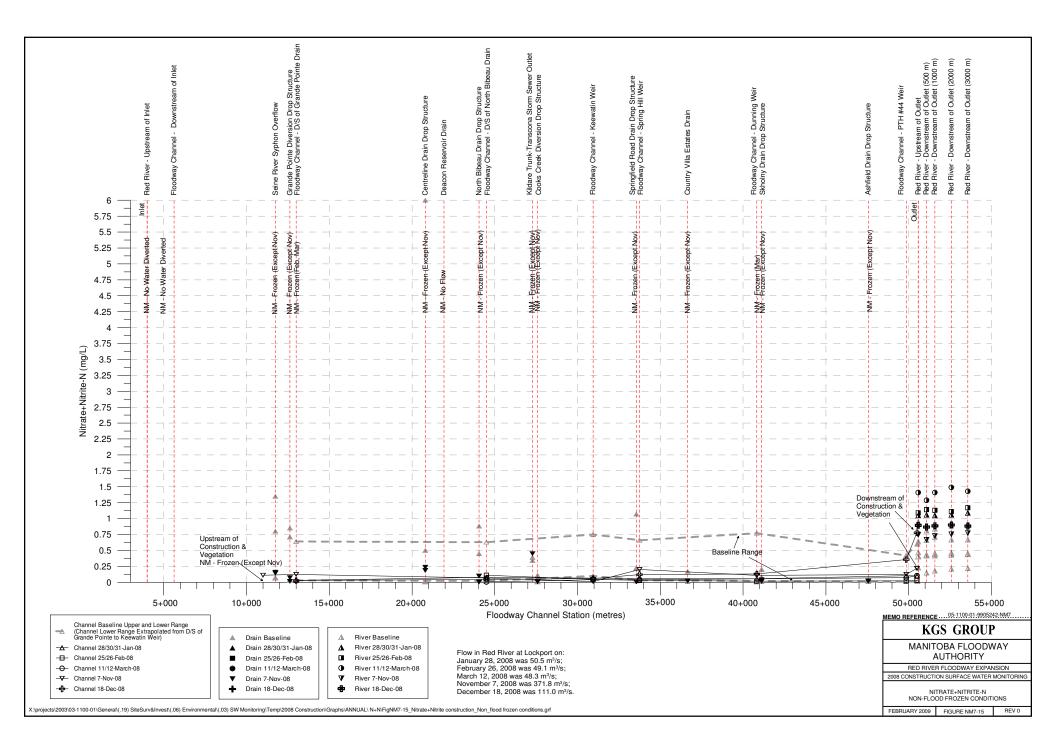


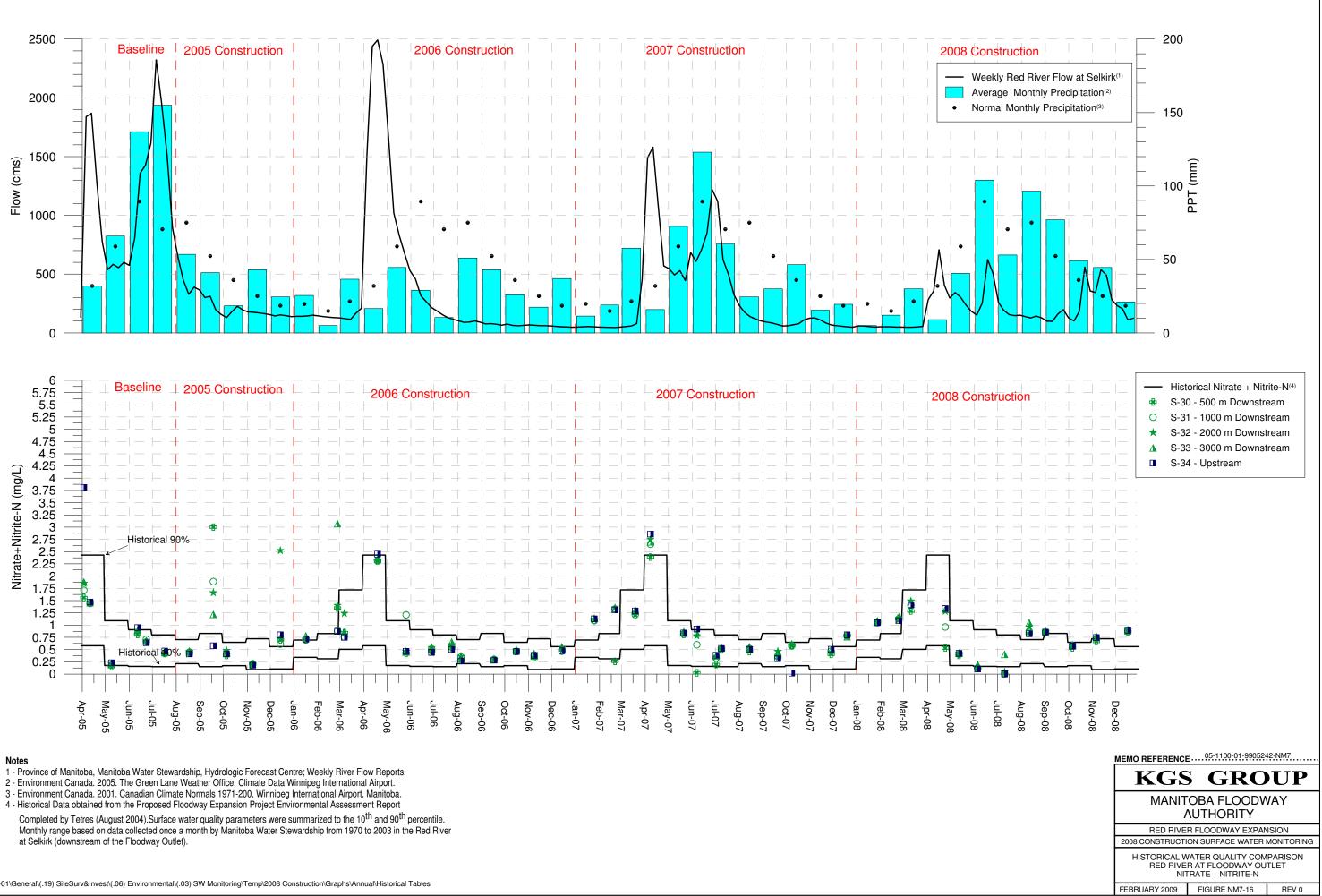


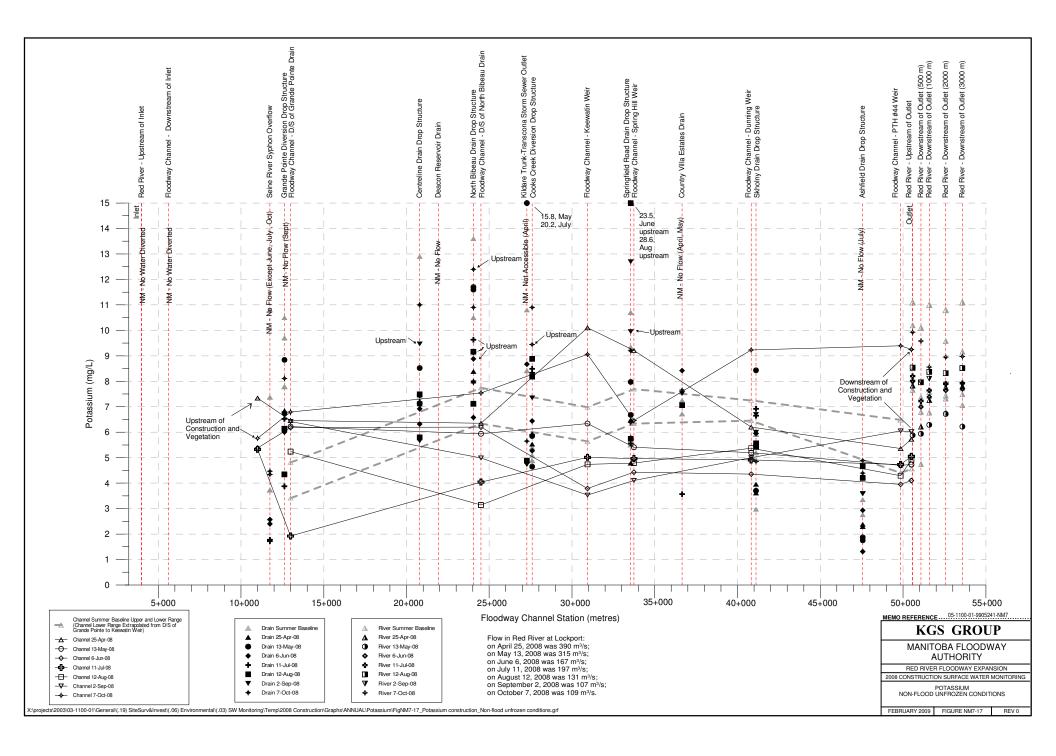


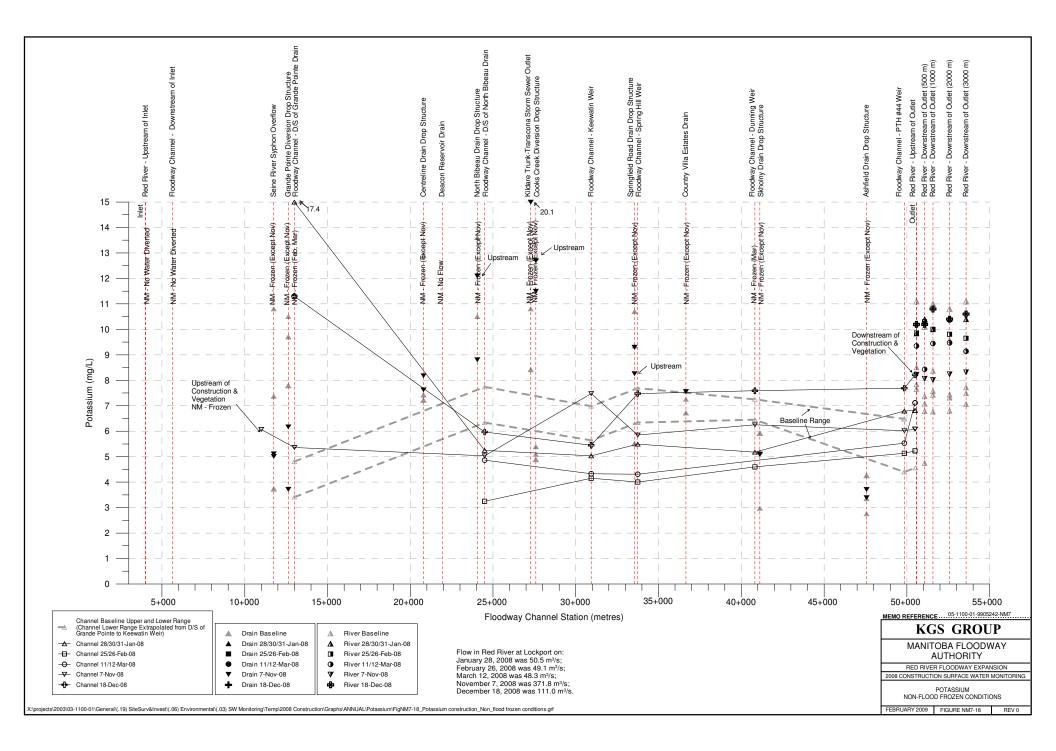


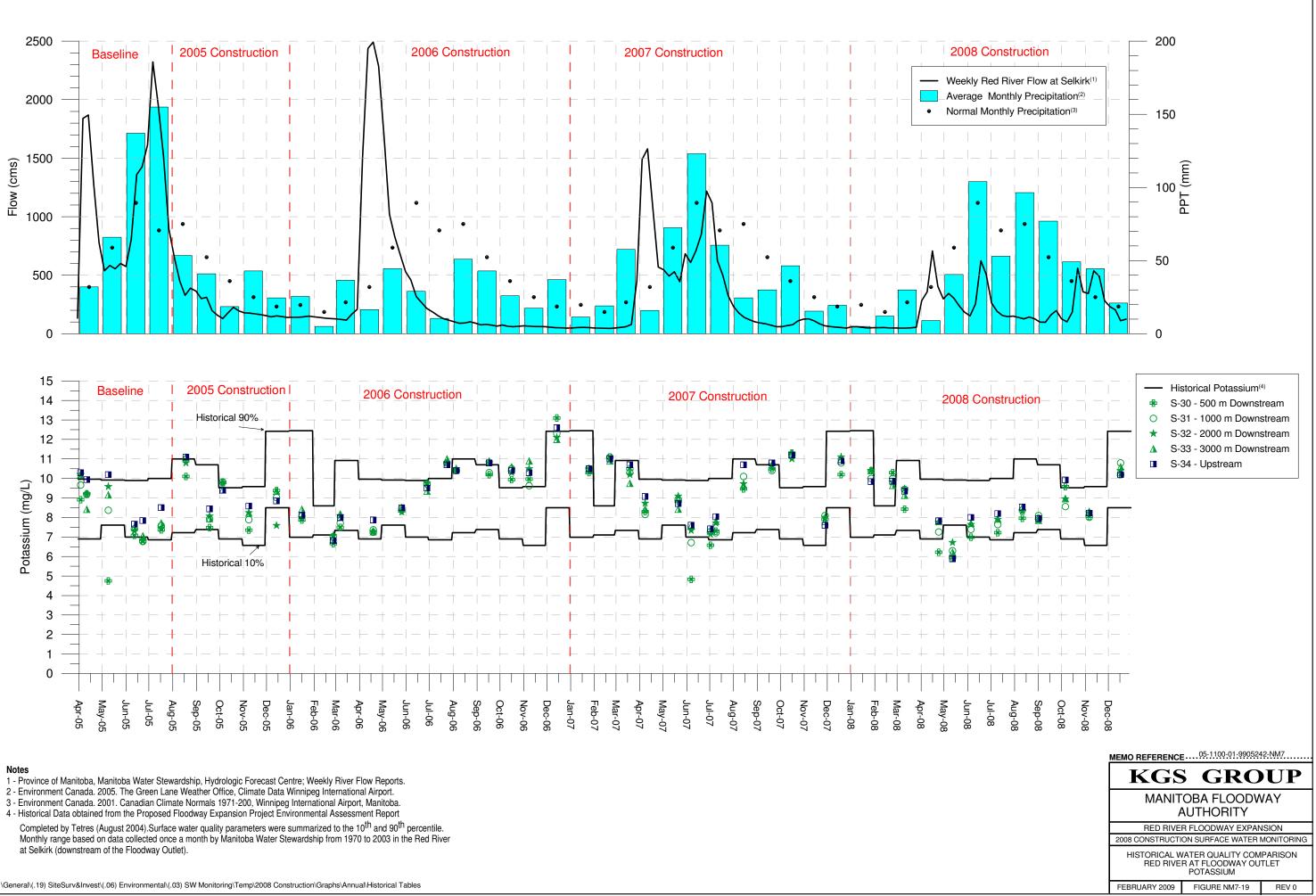


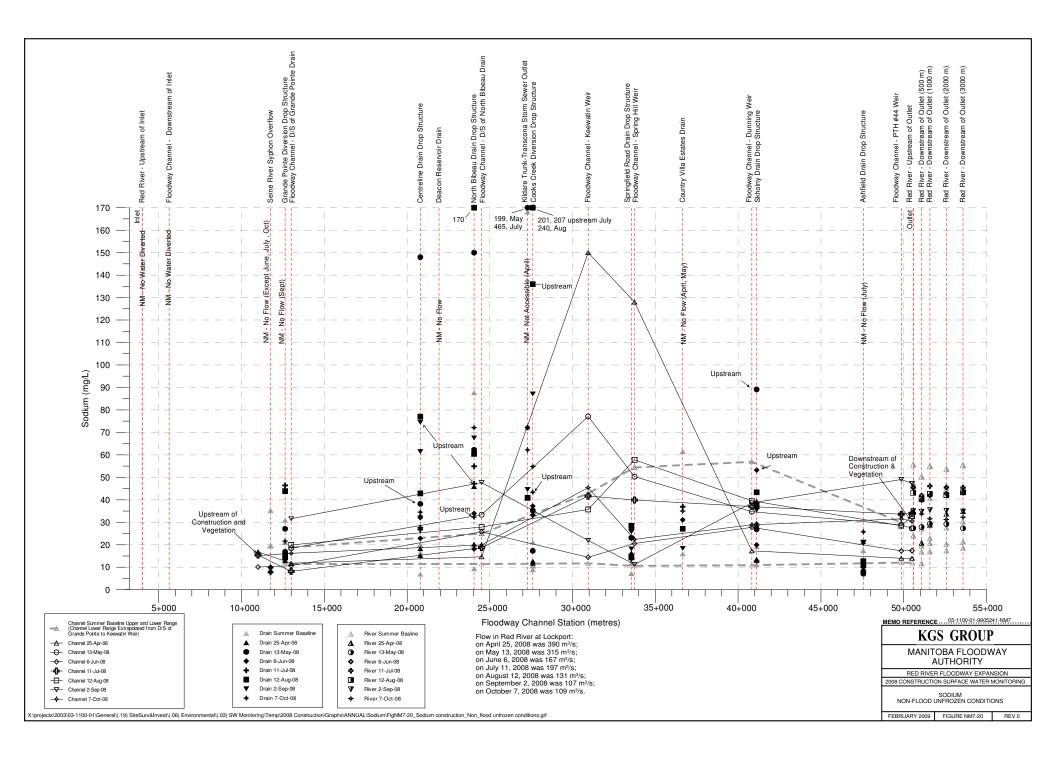


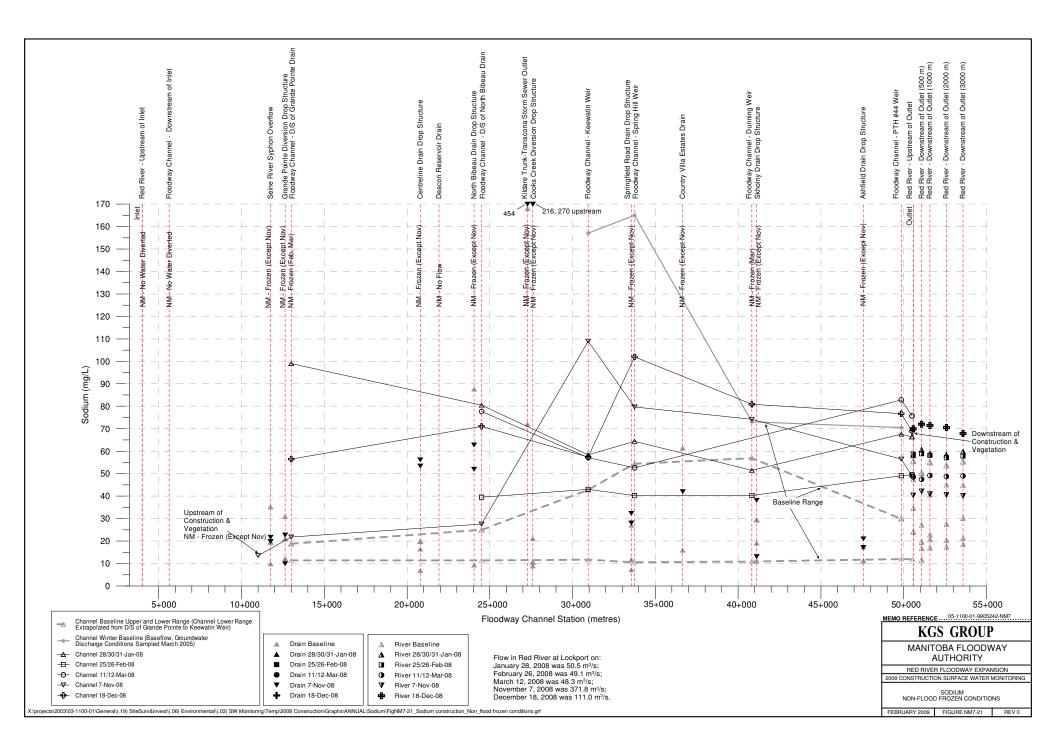


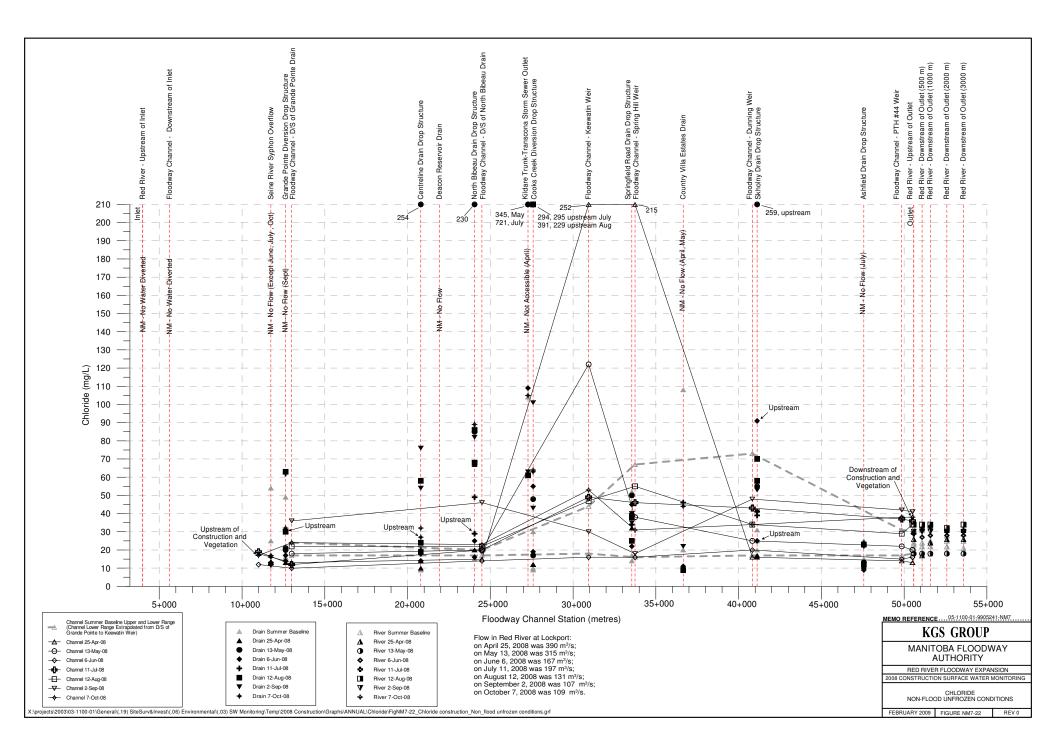


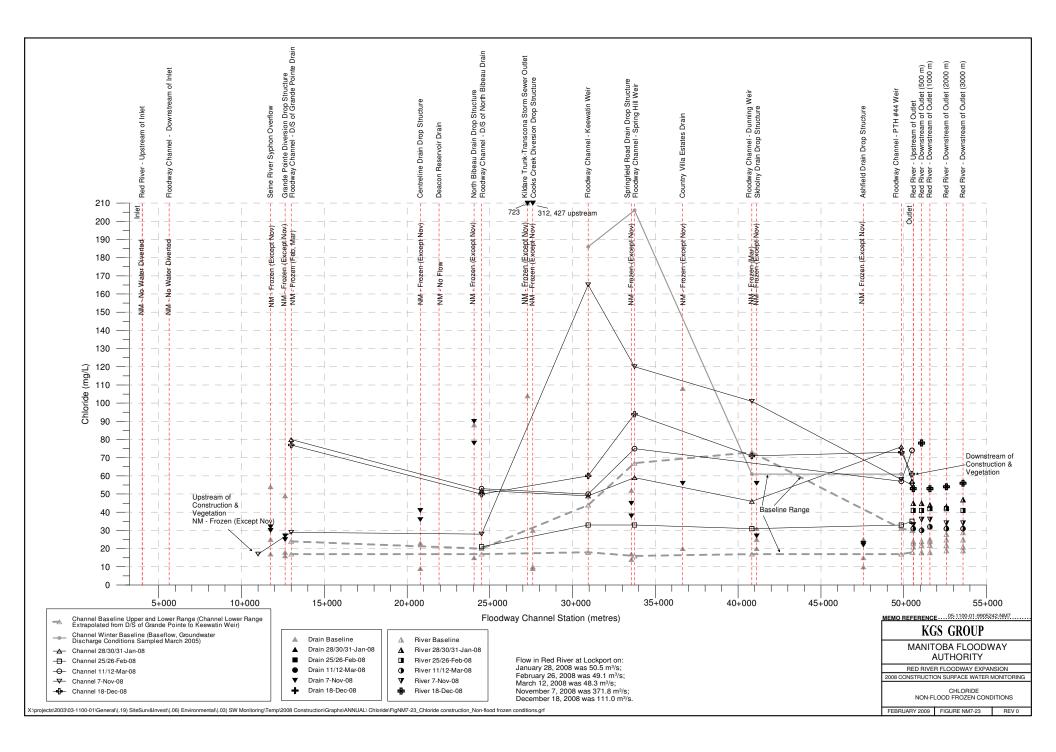


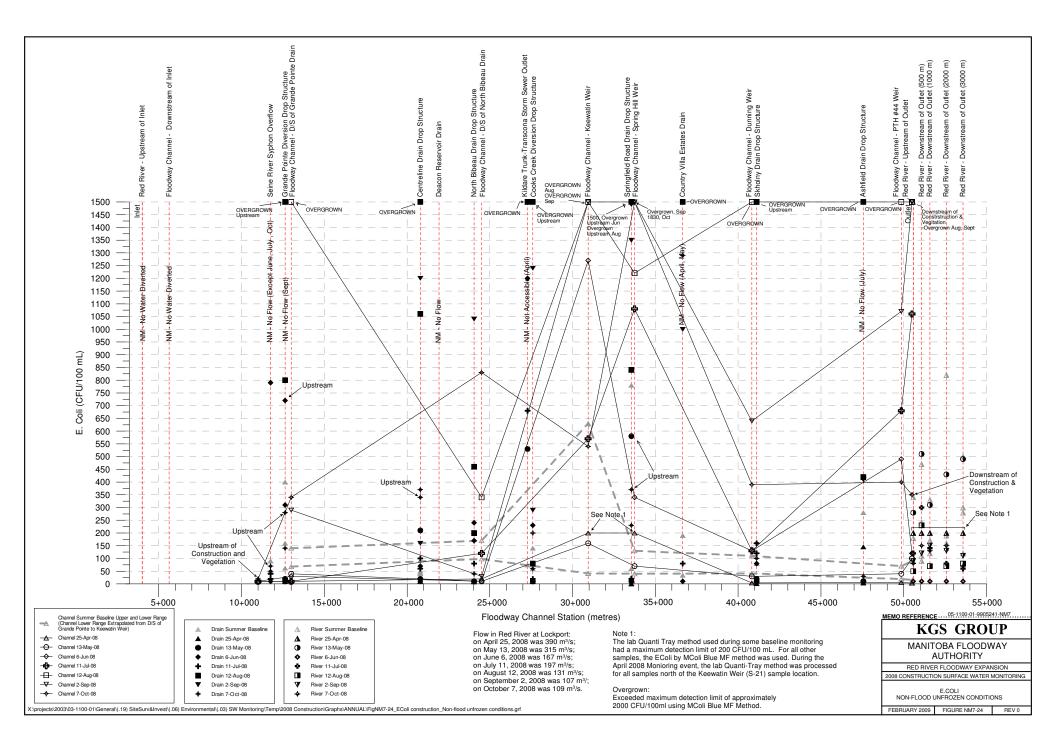


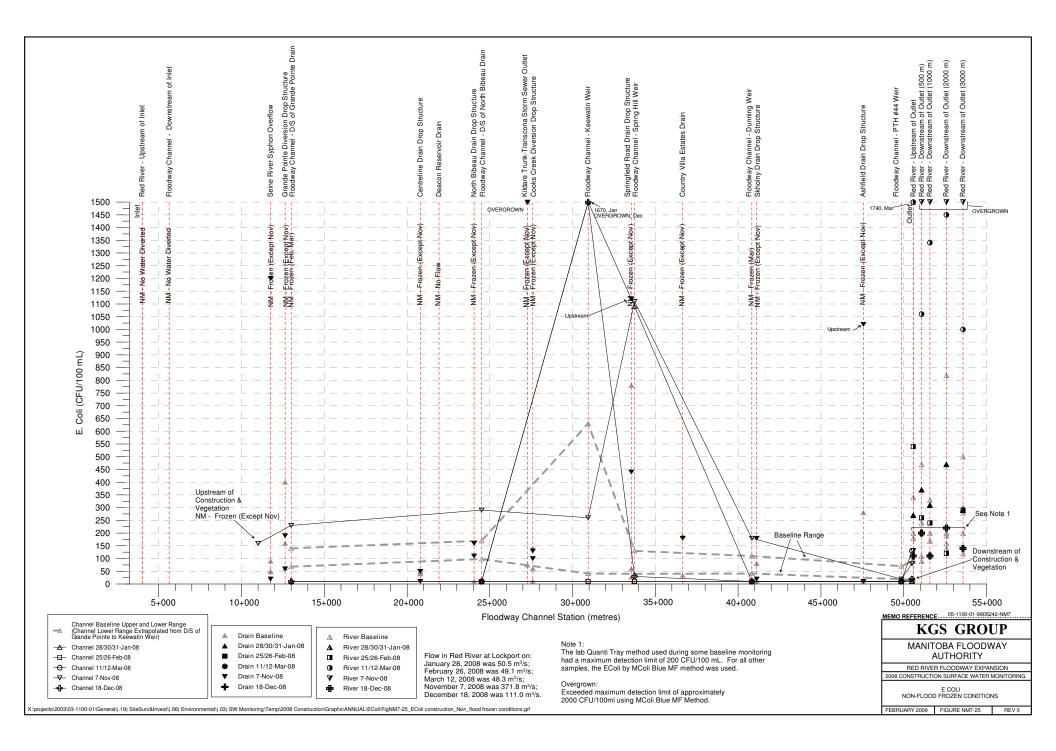












APPENDICES

APPENDIX A

SURFACE WATER MONITORING 2008 SAMPLING PROGRAM

1.0 INTRODUCTION

This provides details and a description of the sampling events, sampling protocol, data reduction, reporting and summary tables for the 2008 Surface Water Sampling Program prepared by KGS Group.

The surface water quality monitoring program consists of Monthly monitoring during the 2008 construction year from January to December 2008 in conjunction with the on-going construction activities. It also consists of Event-based monitoring during 2008 in response to potential erosion causing precipitation and spill events.

The scope of work for the 2008 construction Surface Water Monitoring program conducted by KGS Group includes the following:

- Collect **monthly** surface water quality data for the Red River, Floodway Channel, Drains that flow into the Floodway Channel and Drains that cross the West Dyke, preferably following a precipitation event or at the flood peak during Red River flood conditions;
- Collect **event-based** surface water quality data for compliance monitoring of applicable parameters (TSS, nutrients, herbicides or hydrocarbons) from the Floodway Channel upstream and downstream of the overall construction area, the Red River upstream and downstream of the Outlet and any additional required locations following precipitation events greater than 10 mm or a spill; and
- Provide an assessment of surface water quality comparing results of construction monthly and event-based compliance monitoring to baseline water quality and summarized in an 2008 construction monitoring report in order to;
 - compare predictions made in modelling effects
 - assess the effectiveness of proposed mitigation measures and adapt if necessary
 - adapt the construction monitoring program in response to data and changes in mitigation measures.

2.0 SAMPLING LOCATIONS

The sample locations are similar to those used during the past sampling programs incorporating minor alterations as recommended in the Baseline and 2005, 2006 and 2007 Construction Surface Water Monitoring reports. These sample locations are outlined on Figure NM7-1 and Figure NM7-2 and described as follows;

Red River at Inlet

• Upstream of the Floodway channel along the west shore of the river, 3 replicate samples collected consecutively at the same location (S-01) to capture the natural variation within the Red River. During a sample event when there is no river water entering into the Floodway channel at the inlet, then these samples will not be collected during that event.

Red River at Outlet

• Upstream of the Floodway Outlet along the east shore (S-34) and downstream of the Outlet along the east shore at 500, 1000, 2000 and 3000 m (S-30, S-31, S-32 and S-33, respectively).

Floodway Channel

• Floodway Channel downstream of the Inlet (S-04), downstream of the Grande Pointe Diversion drop structure (S-13), downstream of the North Bibeau Drain drop structure (S-14) and at the four weir locations within the low flow channel used to calculate the channel base flow during the winter; Keewatin Weir (S-21), Springfield Weir (S-23), Dunning Weir (S-25) and PTH# 44 Weir (S-28). For quality control one replicate sample is collected during each sample event from one of the channel locations. Note during a sampling event if no Red River water is entering into the Floodway Channel, sample location S-04 in the channel downstream of the inlet will not be collected during that event. Likewise, during a sample location then that location will not be collected during that event.

Outfall Sources

 At the 11 outfalls immediately upstream of where they drain into the Floodway channel. These include; Seine River Syphon Overflow (S-05), Grande Point Diversion Drop Structure (S-06), Centreline Drain Drop Structure (S-07), Deacon Reservoir Drain (S-08), Cooks Creek Diversion Drop Structure (S-09), North Bibeau Drain Drop Structure (S-10), Country Villa Estates Drain (S-11), Kildare Trunk-Transcona Storm Sewer Outlet (S-12), Springfield

Road Drain Drop Structure (S-22), Skholny Drain Drop Structure (S-26) and Ashfield Drain Drop Structure (S-27). During a sample event if there is low flow or the water is frozen such that no water is entering into the Floodway from any of the above drains or there is insufficient amounts of water in the drain to collect a sample (< 0.10 m flow depth) then, that drain will not be sampled during that event. Additionally, during a sample event if a drain is within an area of on-going construction activities, to eliminate a potential confounding effect and in order to assess the effects from the perimeter ditches an additional sample will be collected from the drain upstream of the perimeter ditching.

West Dyke

 Downstream of the West Dyke in the Manness (S-35) and Domain (S-36) Drains. During a sample event if there is insufficient amounts of water in either of the drains to collect a sample (< 0.10 m flow depth) or the water is frozen then, that drain will not be sampled during that event.

Construction Areas

Sample locations will be located in the Floodway Channel, upstream and downstream of the overall construction limits for all contracts (CON U/S and CON D/S) and upstream and downstream of the limits of the entire re-vegetation area for all contracts (VEG U/S and VEG D/S). Note these sample locations will change as work proceeds and the limits of construction change. During a sample event if there is less than 0.1 m water depth in the low flow channel at a sample location then that location will not be collected during that event.

The potential maximum number of sample locations, likely only for monthly sampling events in late fall, is 42, whereas on average there will likely be 30 sample locations. The sample locations used for any given sampling event will depend on the time of year, flow conditions and construction progress to date. For example, during the winter construction period no river water will be flowing into the Floodway Channel and most or all of the drains will likely be frozen and therefore samples will likely only be collected from the Floodway Channel and the Red River at the Outlet. Likewise, during the spring to fall construction period when drier conditions occur

such as in 2006, if any of the source flows of water into the Floodway Channel (i.e. Red River and the 11 outfalls) are not flowing into the channel or have an insufficient amount of water to sample, then they will not be sampled.

3.0 SAMPLING PROTOCOL

As in the previous years sampling programs, the protocol follows the U.S. Environmental Protection Agency (EPA), Office of Water Quality, Monitoring Water Quality, Chapter 5 Water Quality Conditions (November, 1997, EPA 841-B-97-003). Samples are collected by wading into the water source and/or using a 3 metre sample extension rod to sample as close to the centre of the flow as possible. For safety considerations, the Red River samples are collected from the shoreline using the sample extension rod. Samples are collected by dipping a sample collector into the water to a depth of approximately 30 cm, or half the depth if there is less than 60 cm of water, and scooping the sample collector upstream into the water flow. If there is an insufficient depth of water, 10 cm or less, then sampling is not conducted as the bottom would likely be disturbed during sampling and spoil the sample. Before each sample, the collection jar is rinsed a minimum of three times with the sample water to ensure representative readings of the existing surface water conditions.

During winter when the surface water has an ice cover, an auger or other tools will be used to provide access to sample the water. The sampling health and safety plan includes: two person sampling; flotation suits during cold weather and/or high flows; Personal Floatation Devices (PFD's) during other times; use of a harness and rope to anchor personnel to a fixed object and specifications for working on ice.

4.0 PARAMETERS

While sampling during monthly monitoring, field measurements of pH, temperature, conductivity and turbidity will be obtained. Water depth is also recorded from staff gauges installed at Floodway Channel locations and in the outfalls. Staff gauges are not installed at Kildare Trunk-Transcona Storm Sewer Outlet, Country Villa Estates Drain and Deacon Reservoir Drain as it is not feasible to record the depth of water at these drains. No depth of water is recorded for any of the samples collected from the Red River or the West Dyke drains. The water depth is

recorded to estimate the water discharge at each site using rating curves developed for each of the drains and the Floodway Channel at the sample locations. Estimates of the water discharge are necessary to calculate approximate mass balances for the chemical analysis results to interpret the results in particular during event-based compliance monitoring. Discharge estimates for the Red River are based on upstream and downstream measurements from Water Survey of Canada Metering Stations.

The analysis package for the monthly sampling events includes various combinations of the following;

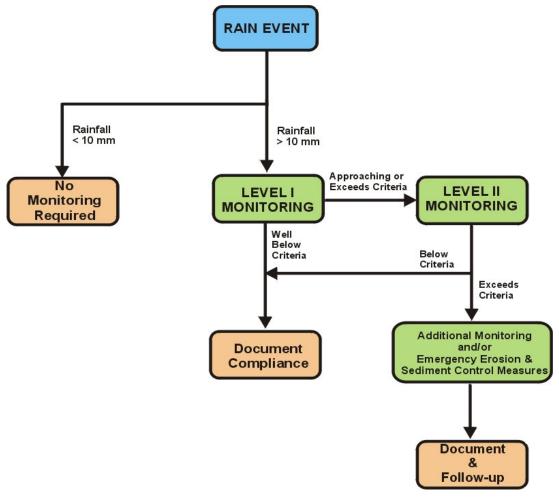
- Routine extractable (iron, manganese, fluoride, pH, total dissolved solids, sulphate, nitratenitrite, calcium, potassium magnesium, sodium, hardness, conductivity, chloride, total alkalinity, bicarbonate, carbonate and hydroxide)
- Total suspended solids (TSS) and turbidity
- Ammonia
- Ortho phosphorus, total phosphorus, total dissolved phosphorus
- Dissolved organic carbon (DOC), total organic carbon (TOC)
- Total Kjeldahl nitrogen (TKN)
- Phenoxy acid herbicide screen (2,4-D, Bromoxynil, Dicamba, MCPA, Picloram), AMPA and Glyphosate
- Benzene, toluene, ethylbenzene and xylenes (BTEX)
- Hydrocarbon fractions F1 to F4
- Total coliform and *E.Coli* by m-Coli Blue Membrane Filtration method

The specific parameters assessed during monthly monitoring at each sampling location are similar to the previous sampling programs and are detailed in Table 1. Additional parameters can be added, if required and approved by MFA.

5.0 EVENT-BASED COMPLIANCE MONITORING

Event-based compliance monitoring will be conducted in response to rain events and spill events with samples analyzed for the following parameters of interest:

- Total Suspended Solids (as detailed in the KGS Group Memorandum 03-1100-01.37.10 Erosion and Sediment Control Plan, Event-Based Compliance Monitoring Program)
- Nutrients field temperature, pH, nitrate-nitrite+N, ammonia, total Kjeldahl nitrogen, ortho phosphorus, total phosphorus and total dissolved phosphorus
- Herbicides Phenoxy acid herbicide screen, AMPA and Glyphosate
- Hydrocarbons BTEX and fraction F1 to F4



Rain Event

As outlined in the flow chart below, the event-based monitoring program will be structured so that the level of effort associated with the monitoring is consistent with the level of potential concern. The structure for the 2008 sampling program represents the modifications made during the 2006 sampling program as discussed in the 2006 Construction Surface Water Monitoring Report (March 2007) and detailed in the October 3, 2006 KGS Group Memorandum (05-1100-01.19.06.03) Red River Floodway Expansion Project; 2006 Surface Water Sampling Program – Precipitation Review.

When a rainfall is less than 10 mm no monitoring is required. When rainfall exceeds 10 mm, a relatively simple monitoring approach ("Level I") will be carried out to indicate whether the downstream conditions are approaching the CCME and Provincial limits or whether the concentration inflow to the Red River is within accepted limits. If the "Level I" downstream conditions approach the CCME and Provincial limits, more rigorous monitoring ("Level II") will be carried out to determine whether additional mitigation control measures are required.

Monitoring Program Flow Chart

Real-time precipitation data will be used to trigger the initiation of the Level I monitoring program. This real-time data will be monitored regularly whenever there are precipitation events to allow for the monitoring team to mobilize in order to carry out the surface water sampling without delay following or during rain events.

There are a couple of Environment Canada rainfall gauges within the City of Winnipeg that can be used as a source of real-time rainfall data. This data will not be accessible directly by the monitoring team and is provided by the owners of the rainfall gauge network on a daily basis. As such a network of unofficial rainfall gauges within the City of Winnipeg are used as a source of real-time rainfall data.

The rainfall/monitoring criteria have been formulated based on experience during the 2006 and 2007 sampling programs, assuming an adaptive management approach will be followed throughout the Project to ensure that the level of monitoring is consistent with the potential concern. That is, if it is regularly determined that parameter concentrations are well below the CCME and Provincial criterion for rain events greater than 10 mm even with the increased area of open excavations, the criterion for "Level I" monitoring will be revised accordingly.

Level I – The "Level I" monitoring program will consist of sampling in the Floodway Channel upstream and downstream of the construction area and in the Red River upstream and downstream of the Outlet. Field turbidity, using a hand-held turbidity meter, and the water level will be measured and used to estimate the TSS and the flow.

TSS will be estimated using the site-specific relationships between TSS and field turbidity. These were defined as part of the Baseline Surface Water Monitoring Program and updated following each monthly sampling event during the 2005, 2006 and 2007 Construction Surface Water Monitoring. Two relationships were developed, one for Red River water and a second for non-Red River water. The Red River water relationship is based on data collected from the Red River as well as data collected from the Floodway during operation of the Floodway. The non-Red River water relationship is based on data collected from the Floodway when it was not in operation and from the inflowing drains. The TSS and field turbidity relationships will continue to be updated on a monthly basis, allowing the quality of the relationships to improve as more samples are collected.

The estimated TSS and flows will be used in conjunction with a simple mass balance (see attached "Level I Compliance Monitoring Worksheet") to provide an indication as to whether an increase in sediment concentration in the Floodway will have an impact on the Red River downstream of the Floodway Outlet. Additionally, as phosphorus fertilizer and glyphosate-based herbicides readily bind to soil particles the estimated TSS will give an indication of potential nutrient and herbicide concentration increases. It should be noted that the estimate of flows and TSS values are considered to be approximate and are to be used in the mass balance to provide a best estimate of the impacts of construction. The factor that has the most sensitivity to the percent increase in sediment concentration in the Red River is the Red River flow, that is, if the Red River flow is quite low, there is a greater risk of exceeding the Provincial Criterion. The effect of the magnitude of the river flow is discussed in the Erosion and Sediment Control Plan.

In addition to measuring field turbidity, samples will be collected at the four locations for laboratory confirmation analysis of TSS. If fertilizer has been applied or if herbicides have been used within two weeks prior to the rain event, then samples will also be collected and submitted for laboratory analysis of nutrients and herbicides, respectively.

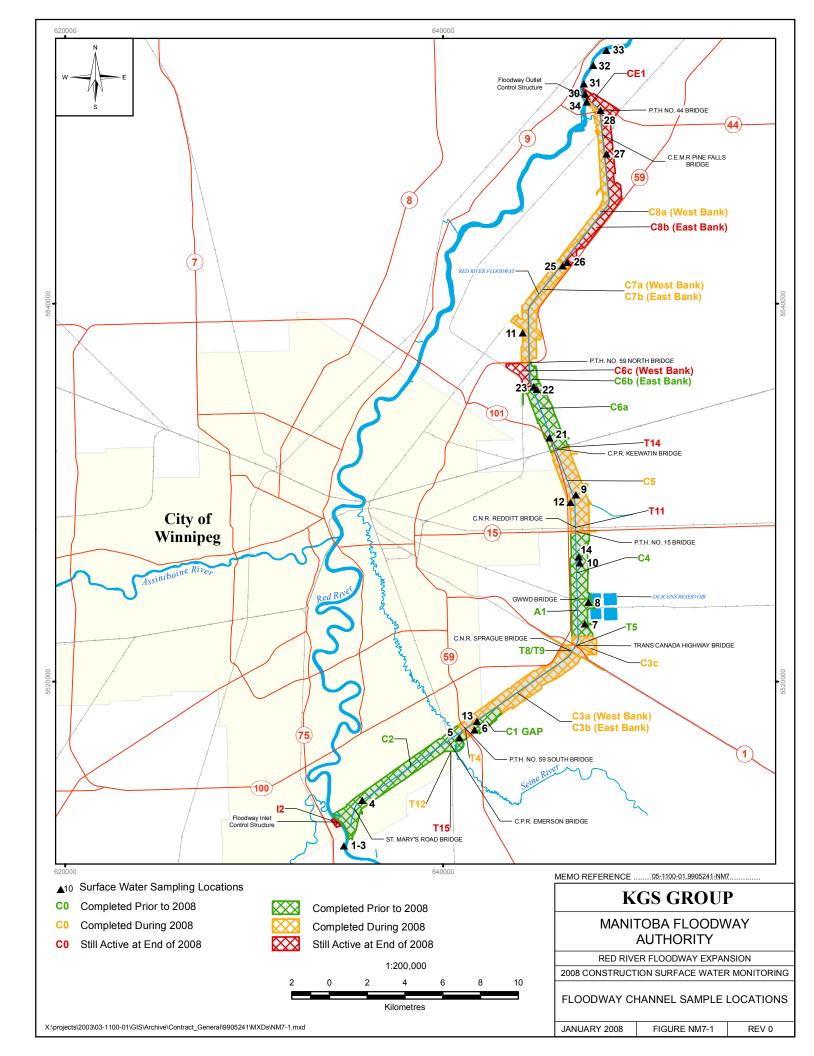
Level II – The "Level II" monitoring program considers more sample locations that allow for both the assessment of the dilution effect of the Floodway channel downstream of the construction zone and of where the potential contaminant source(s) originate. It will consist of collecting samples at all of the sample locations that would be monitored during a monthly monitoring event, however only the applicable parameters will be analyzed. These include TSS, and if used within two weeks prior to the rain event, nutrients and herbicides.

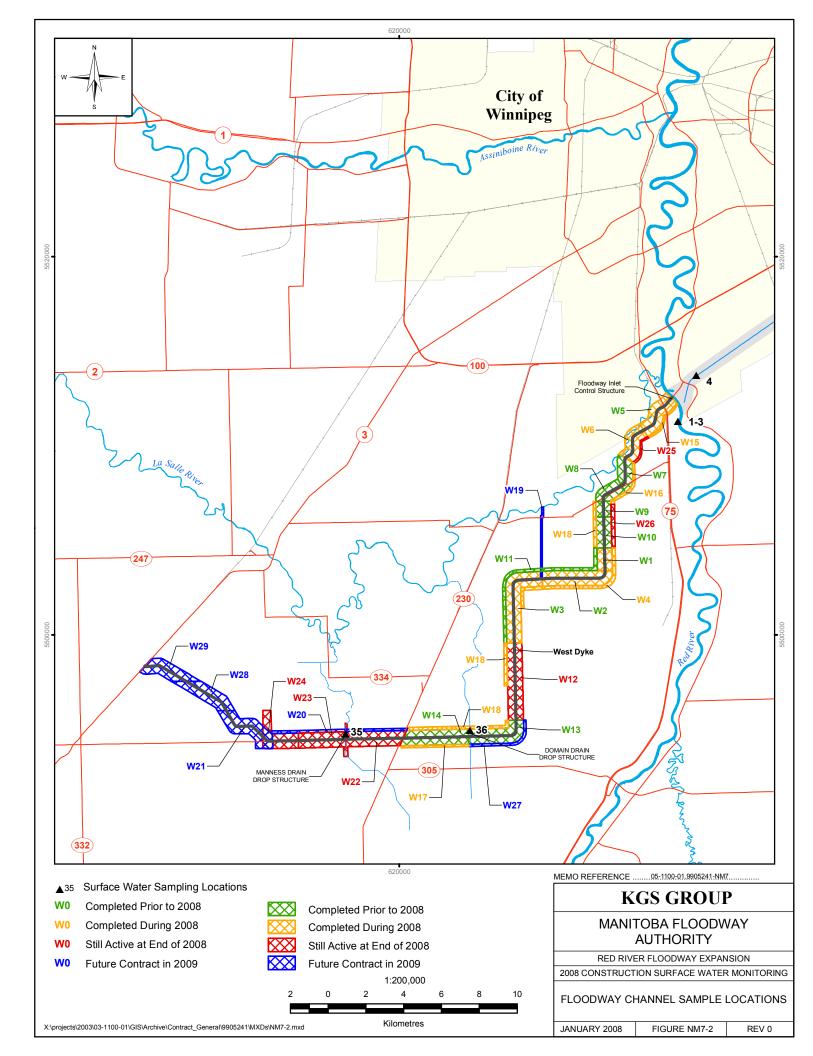
Spill Event

The event-based monitoring program in response to spills will consist of sampling in the Floodway Channel and in the Red River with samples analyzed for nutrients, herbicides or hydrocarbons as dictated by the material spilled. Samples will be collected in the Floodway Channel upstream and downstream of the spill point source, at two more locations further downstream in the Floodway Channel and in the Red River upstream and 1000 m downstream of the Outlet immediately following notification of the spill. In order to track the status of the contaminant plume as it moves downstream, these six sample locations will also be sampled at regular time intervals (based on the flow magnitude during the spill event) for a total of up to three days of monitoring following the spill event.

6.0 **REPORTING**

The data collected during the monthly monitoring and event-based compliance monitoring will be summarized in table format outlining the surface water quality. This information will be compared to the 2005 baseline data on a monthly and event basis to assess the accuracy of predictions made and the effectiveness of mitigation measures. It will also be summarized in a separate 2008 Annual Construction Monitoring Report. In addition to the annual report, documentation will be provided to MFA after each Level I, Level II, and spill monitoring events.




TABLE 1: SAMPLE PARAMETERS FOR EACH SAMPLE LOCATION DURING THE 2008 CONSTRUCTION MONTHLY MONITORING (JANUARY 2008 - DECEMBER 2008)

	Sample							Parar	neters					
Sample Location	Number	Routine Extractable	TSS	Ammonia	Ortho - P	Total P	Total Dissolved P	DOC	тос	TKN	Phenoxy Acid Herbicide Screen	Glyphosate	BTEX, F1 to F4	Total Coliform / E. Coli
Red River														
Upstream of Inlet (3 replicates) ¹	1 - 3	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Upstream of Outlet	34	Х	Х	Х	Х	Х	X	X	Х	Х				X
Downstream of Outlet (500, 1000, 2000 and 3000 m)	30 - 33	Х	Х	X	Х	Х	X	Х	Х	Х				Х
Floodway Channel														
Downstream of Inlet ¹	4	Х	Х	Х	Х	Х	X	Х	Х	Х				X
Downstream of Grande Pointe DS	13	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Downstream of North Bibeau DS	14	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Keewatin Weir	21	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Spring Hill Weir	23	Х	Х	X	Х	Х	X	Х	Х	Х				Х
Dunning Weir	25	Х	Х	X	Х	Х	X	Х	Х	Х				Х
Hwy #44 Weir	28	Х	Х	X	Х	Х	X	Х	Х	Х				Х
Field Duplicate of one Channel location	99	Х	Х	X	Х	Х	X	Х	Х	Х				Х
Upstream of Construction Area	CON-U/S	Х	Х	X	Х	Х	X	Х	Х	Х			X	Х
Downstream of Construction Area	CON-D/S	Х	Х	X	Х	Х	X	Х	Х	Х			X	Х
Upstream of Revegetation Area	VEG-U/S	Х	Х	X	Х	Х	X	Х	Х	Х	X	Х		Х
Downstream of Revegetation Area	VEG-D/S	Х	Х	Х	Х	Х	X	Х	Х	Х	X	Х		Х
Drains ¹														
Seine River Syphon Overflow	5	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Grande Pointe Diversion Drop Structure	6	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Centreline Drain Drop Structure	7	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Deacon Reservoir Drain	8	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Cooks Creek Diversion Drop Structure	9	Х	Х	X	Х	Х	X	Х	Х	Х				Х
North Bibeau Drain Drop Structure	10	Х	Х	X	Х	Х	X	Х	Х	Х				Х
Country Villa Estates Drain	11	Х	Х	X	Х	Х	X	Х	Х	Х				Х
Kildare Trunk–Transcona Storm Sewer Outlet	12	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Spring Field Road Drain Drop Structure	22	Х	Х	X	Х	Х	X	Х	Х	Х				Х
Skholny Drain Drop Structure	26	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Ashfield Drain Drop Structure	27	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Upstream of perimeter ditch in active constructin areas		Х	Х	Х	Х	Х	X	Х	Х	Х				Х
West Dyke														
Downstream of Manness Drain	35	Х	Х	Х	Х	Х	X	Х	Х	Х				Х
Downstream of Domain Drain	36	Х	Х	X	Х	Х	X	Х	Х	Х				X
Estimated Average Number of Samples/Month ²		27	27	27	27	27	27	27	27	27	2	2	2	27

Notes:

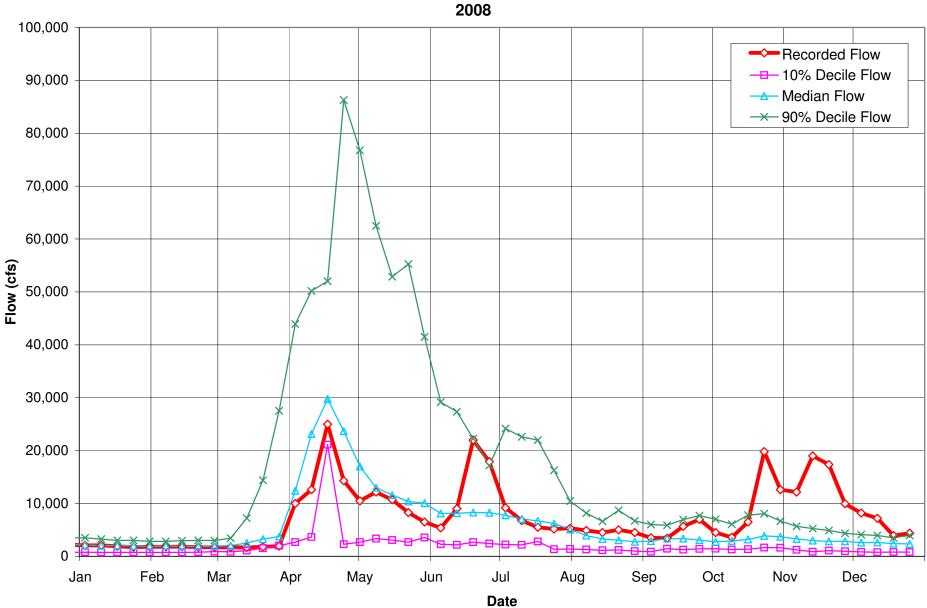
During the sampling events if there is no water flowing into the floodway channel from the Red River or a drain due to frozen or low flow conditions then sampling that location is not required.
 Average based on experience obtained during previous years that realizes that not every sample location visited each month will have a sample collected.

Manitoba

Floodway Expansion Authority

FLOODWAY EXPANSION PROJECT SURFACE WATER MONITORING PROGRAM

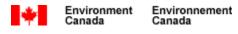
LEVEL I SURFACE WATER MONITORING WORKSHEET


Recorded Flows and Turbidity Values

Floodway Channel - Downstream of Construction Flow = m ³ /s Box 3 Turbidity = NTU Box 4 Red River - Upstream of Floodway Outlet Flow = m ³ /s Box 5 Turbidity = NTU Box 6 Sediment Concentration Values Note: Based on recorded turbidity and appropriate regression relationship Note: Based on recorded turbidity and appropriate regression relationship Floodway Channel - Upstream of Construction TSS = mg/L Box 7 [Use Box 2 in Regression Equation] Floodway Channel - Downstream of Construction TSS = mg/L Box 8 [Use Box 4 in Regression Equation] Red River - Upstream of Floodway Outlet TSS = mg/L Box 9 [Use Box 6 in Regression Equation] Red River Water (ie Red River, FW Operation) Non - Red River Water (ie. FW non-operation, Drains) TSS = 1.297 x Turbidity - 6.781 TSS = 0.748 x Turbidity + 2.775 Sediment Load Sediment Load	Note: Recorded flows and turbidity values based on field measurements										
Floadway Channel - Downstream of Construction Flow = m ¹ /s Box 3 Turbidity = NTU Box 4 Red River - Upstream of Floadway Outlet Flow = m ¹ /s Box 5 Turbidity = NTU Box 6 Sediment Concentration Values											
Red River - Upstream of Floodway Outlet Flow = m ³ /s Box 5 Turbidity = NTU Box 6 Sediment Concentration Values Note: Based on recorded turbidity and appropriate regression relationship Floodway Channel - Upstream of Construction TSS = mg/L Box 7 [Use Box 2 in Regression Equation] Floodway Channel - Downstream of Construction TSS = mg/L Box 7 [Use Box 4 in Regression Equation] Red River - Upstream of Floodway Outlet TSS = mg/L Box 9 [Use Box 6 in Regression Equation] Red River - Upstream of Floodway Outlet TSS = mg/L Box 9 [Use Box 6 in Regression Equation] Red River - Upstream of Floodway Outlet TSS = mg/L Box 9 [Use Box 6 in Regression Equation] Red River Water (ie Red River, FW Operation) Non - Red River Water (ie. FW non-operation, Drains) TSS = 1.297 x Turbidity - 6.781 TSS = 0.748 x Turbidity + 2.775 Sediment Load = tonne/day Box 10 = [0.0864 x Box 1 x Box 7] Downstream of Construction Area Sediment Load = tonne/day Box 11 = [0.0864 x Box 3 x Box 8] Red River - Upstream of Floodway Outlet Sediment Load = tonne/day Box 12 = [0.0864 x Box 5 x Box 9]	Floodway Channel – Upstream of Construction	Flow = m^3/s Box 1 Turbidity = NTU Box 2									
Sectiment Concentration Values Note: Based on recorded turbidity and appropriate regression relationship Floodway Channel – Upstream of Construction TSS = mg/L Box 7 [Use Box 2 in Regression Equation] Floodway Channel – Downstream of Construction TSS = mg/L Box 8 [Use Box 4 in Regression Equation] Red River – Upstream of Floodway Outlet TSS = mg/L Box 9 [Use Box 6 in Regression Equation] Regression Relationships mg/L Box 9 [Use Box 6 in Regression Equation] Red River – Upstream of Floodway Outlet TSS = mg/L Box 9 [Use Box 6 in Regression Equation] Regression Relationships	Floodway Channel – Downstream of Construction	Flow = m^3/s Box 3 Turbidity = NTU Box 4									
Note: Based on recorded turbidity and appropriate regression relationship Floodway Channel – Upstream of Construction TSS = mg/L Box 7 [Use Box 2 in Regression Equation] Floodway Channel – Downstream of Construction TSS = mg/L Box 8 [Use Box 4 in Regression Equation] Red River – Upstream of Floodway Outlet TSS = mg/L Box 9 [Use Box 6 in Regression Equation] Regression Relationships mg/L Box 9 [Use Box 6 in Regression Equation] Red River Water (ie Red River, FW Operation) Non – Red River Water (ie. FW non-operation, Drains) TSS = 1.297 x Turbidity – 6.781 TSS = 0.748 x Turbidity + 2.775 Sediment Load	Red River – Upstream of Floodway Outlet	Flow = m^3/s Box 5 Turbidity = NTU Box 6									
Note: Based on recorded turbidity and appropriate regression relationship Floodway Channel – Upstream of Construction TSS = mg/L Box 7 [Use Box 2 in Regression Equation] Floodway Channel – Downstream of Construction TSS = mg/L Box 8 [Use Box 4 in Regression Equation] Red River – Upstream of Floodway Outlet TSS = mg/L Box 9 [Use Box 6 in Regression Equation] Regression Relationships mg/L Box 9 [Use Box 6 in Regression Equation] Red River Water (ie Red River, FW Operation) Non – Red River Water (ie. FW non-operation, Drains) TSS = 1.297 x Turbidity – 6.781 TSS = 0.748 x Turbidity + 2.775 Sediment Load	Sediment Concentration Values										
Floodway Channel – Upstream of Construction TSS = mg/L Box 7 [Use Box 2 in Regression Equation] Floodway Channel – Downstream of Construction TSS = mg/L Box 8 [Use Box 4 in Regression Equation] Red River – Upstream of Floodway Outlet TSS = mg/L Box 9 [Use Box 6 in Regression Equation] Regression Relationships mg/L Box 9 [Use Box 6 in Regression Equation] Red River Water (ie Red River, FW Operation) Non – Red River Water (ie. FW non-operation, Drains) TSS = 1.297 x Turbidity – 6.781 TSS = 0.748 x Turbidity + 2.775 Sediment Load											
Floodway Channel - Downstream of Construction TSS = mg/L Box 8 [Use Box 4 in Regression Equation] Red River - Upstream of Floodway Outlet TSS = mg/L Box 9 [Use Box 6 in Regression Equation] Regression Relationships mg/L Box 9 [Use Box 6 in Regression Equation] Red River Water (ie Red River, FW Operation) Non - Red River Water (ie. FW non-operation, Drains) TSS = 1.297 x Turbidity - 6.781 TSS = 0.748 x Turbidity + 2.775 Sediment Load upstream of Construction Area Sediment Load = tonne/day Upstream of Construction Area Sediment Load = tonne/day Box 11 = [0.0864 × Box 3 × Box 8] Red River - Upstream of Floodway Outlet Sediment Load = tonne/day Box 11 = [0.0864 × Box 5 × Box 9] Calculated Effect of Construction Works After Mixing in the Red River none/day Box 13 = [Box 3 + Box 5] Sediment Load in Red River m ³ /s Box 13 = [Box 14 + Box 12] Sediment Load in Red River mg/L Box 15 = [11.574 × Box 14 + Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9] Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9]	Note: Based on recorded turbidity and appropriate regress	ession relationship									
Red River - Upstream of Floodway Outlet TSS = mg/L Box 9 [Use Box 6 in Regression Equation] Regression Relationships Red River Water (ie Red River, FW Operation) Non - Red River Water (ie. FW non-operation, Drains) TSS = 1.297 x Turbidity - 6.781 TSS = 0.748 x Turbidity + 2.775 Sediment Load Upstream of Construction Area Sediment Load = tonne/day Box 10 = [0.0864 × Box 3 × Box 7] Downstream of Construction Area Sediment Load = tonne/day Box 11 = [0.0864 × Box 3 × Box 8] Red River - Upstream of Floodway Outlet Sediment Load = tonne/day Box 12 = [0.0864 × Box 3 × Box 8] Red River - Upstream of Floodway Outlet Sediment Load = tonne/day Box 12 = [0.0864 × Box 5 × Box 9] Calculated Effect of Construction Works After Mixing in the Red River Note: Assumes no other inflows to channel except those at the downstream end of construction Flow in Red River m³/s Box 13 = [Box 11 + Box 12] Sediment Load in Red River mg/L Box 15 = [11.574 × Box 14 + Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9] Red River	Floodway Channel – Upstream of Construction	TSS = mg/L Box 7 [Use Box 2 in Regression Equation]									
Regression Relationships Red River Water (ie Red River, FW Operation) Non – Red River Water (ie. FW non-operation, Drains) TSS = 1.297 x Turbidity – 6.781 TSS = 0.748 x Turbidity + 2.775 Sediment Load	Floodway Channel – Downstream of Construction	TSS = mg/L Box 8 [Use Box 4 in Regression Equation]									
Red River Water (ie Red River, FW Operation) Non - Red River Water (ie. FW non-operation, Drains) TSS = 1.297 x Turbidity - 6.781 TSS = 0.748 x Turbidity + 2.775 Sediment Load Upstream of Construction Area Sediment Load = tonne/day Box 10 = [0.0864 × Box 1 × Box 7] Downstream of Construction Area Sediment Load = tonne/day Box 11 = [0.0864 × Box 3 × Box 8] Red River - Upstream of Floodway Outlet Sediment Load = tonne/day Box 12 = [0.0864 × Box 5 × Box 9] Calculated Effect of Construction Works After Mixing in the Red River Note: Assumes no other inflows to channel except those at the downstream end of construction Flow in Red River m ³ /s Box 13 = [Box 3 + Box 5] Sediment Load in Red River mg ¹ /s Box 14 = [Box 11 + Box 12] Sediment Concentration in Red River mg/L Box 15 = [11.574 × Box 14 ÷ Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9] [Box 16 = [Box 15 -	Red River – Upstream of Floodway Outlet	TSS = mg/L Box 9 [Use Box 6 in Regression Equation]									
Red River Water (ie Red River, FW Operation) Non - Red River Water (ie. FW non-operation, Drains) TSS = 1.297 x Turbidity - 6.781 TSS = 0.748 x Turbidity + 2.775 Sediment Load Upstream of Construction Area Sediment Load = tonne/day Box 10 = [0.0864 × Box 1 × Box 7] Downstream of Construction Area Sediment Load = tonne/day Box 11 = [0.0864 × Box 3 × Box 8] Red River - Upstream of Floodway Outlet Sediment Load = tonne/day Box 12 = [0.0864 × Box 5 × Box 9] Calculated Effect of Construction Works After Mixing in the Red River Note: Assumes no other inflows to channel except those at the downstream end of construction Flow in Red River m ³ /s Box 13 = [Box 3 + Box 5] Sediment Load in Red River mg/L Box 15 = [11.574 × Box 14 + Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9] [Box 16 - Box 9] <th>Regression Relationships</th> <th></th>	Regression Relationships										
TSS = 1.297 x Turbidity – 6.781 TSS = 0.748 x Turbidity + 2.775 Sediment Load Upstream of Construction Area Sediment Load = tonne/day Box 10 = [0.0864 × Box 1 × Box 7] Downstream of Construction Area Sediment Load = tonne/day Box 11 = [0.0864 × Box 3 × Box 8] Red River - Upstream of Floodway Outlet Sediment Load = tonne/day Box 12 = [0.0864 × Box 5 × Box 9] Calculated Effect of Construction Works After Mixing in the Red River Note: Assumes no other inflows to channel except those at the downstream end of construction Flow in Red River m ³ /s Box 13 = [Box 3 + Box 5] Sediment Load in Red River mg/L Box 15 = [11.574 × Box 14 + Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9]											
Sediment Load Upstream of Construction Area Sediment Load = tonne/day Box 10 = [0.0864 × Box 1 × Box 7] Downstream of Construction Area Sediment Load = tonne/day Box 11 = [0.0864 × Box 3 × Box 8] Red River - Upstream of Floodway Outlet Sediment Load = tonne/day Box 12 = [0.0864 × Box 5 × Box 9] Calculated Effect of Construction Works After Mixing in the Red River Note: Assumes no other inflows to channel except those at the downstream end of construction Flow in Red River m ³ /s Box 13 = [Box 3 + Box 5] Sediment Load in Red River mone/day Box 14 = [Box 11 + Box 12] Sediment Concentration in Red River mg/L Box 15 = [11.574 × Box 14 + Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9]	<u>Red River Water</u> (ie Red River, FW O	Operation) <u>Non – Red River Water</u> (ie. FW non-operation, Drains)									
Upstream of Construction Area Sediment Load = tonne/day Box 10 = [0.0864 × Box 1 × Box 7] Downstream of Construction Area Sediment Load = tonne/day Box 11 = [0.0864 × Box 3 × Box 8] Red River - Upstream of Floodway Outlet Sediment Load = tonne/day Box 12 = [0.0864 × Box 5 × Box 9] Calculated Effect of Construction Works After Mixing in the Red River Note: Assumes no other inflows to channel except those at the downstream end of construction Flow in Red River m³/s Box 13 = [Box 3 + Box 5] Sediment Load in Red River mg/L Box 15 = [11.574 × Box 14 ÷ Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9]	TSS = 1.297 x Turbidity – 6.781 TSS = 0.748 x Turbidity + 2.775										
Downstream of Construction Area Sediment Load = tonne/day Box 11 = [0.0864 × Box 3 × Box 8] Red River - Upstream of Floodway Outlet Sediment Load = tonne/day Box 12 = [0.0864 × Box 5 × Box 9] Calculated Effect of Construction Works After Mixing in the Red River Note: Assumes no other inflows to channel except those at the downstream end of construction Flow in Red River m ³ /s Box 13 = [Box 3 + Box 5] Sediment Load in Red River mg/L Box 15 = [11.574 × Box 14 ÷ Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9]	Sediment Load										
Red River - Upstream of Floodway Outlet Sediment Load = tonne/day Box 12 = [0.0864 × Box 5 × Box 9] Calculated Effect of Construction Works After Mixing in the Red River Note: Assumes no other inflows to channel except those at the downstream end of construction Flow in Red River m ³ /s Box 13 = [Box 3 + Box 5] Sediment Load in Red River tonne/day Box 14 = [Box 11 + Box 12] Sediment Concentration in Red River mg/L Box 15 = [11.574 × Box 14 ÷ Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9]	Upstream of Construction Area Sedin	diment Load = [0.0864 × Box 1 × Box 7]									
Calculated Effect of Construction Works After Mixing in the Red River Note: Assumes no other inflows to channel except those at the downstream end of construction Flow in Red River Sediment Load in Red River Sediment Concentration in Red River mg/L Box 15 = Box 16 = Box 15 - Box 9	Downstream of Construction Area Sedin	diment Load = [0.0864 × Box 3 × Box 8]									
Note: Assumes no other inflows to channel except those at the downstream end of construction Flow in Red River m ³ /s Box 13 = [Box 3 + Box 5] Sediment Load in Red River tonne/day Box 14 = [Box 11 + Box 12] Sediment Concentration in Red River mg/L Box 15 = [11.574 × Box 14 ÷ Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9]	Red River – Upstream of Floodway Outlet Sedin	diment Load = $[0.0864 \times Box 5 \times Box 9]$									
Flow in Red River m³/s Box 13 = [Box 3 + Box 5] Sediment Load in Red River tonne/day Box 14 = [Box 11 + Box 12] Sediment Concentration in Red River mg/L Box 15 = [11.574 × Box 14 ÷ Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9]	Calculated Effect of Construction	Works After Mixing in the Red River									
Sediment Load in Red River tonne/day Box 14 = [Box 11 + Box 12] Sediment Concentration in Red River mg/L Box 15 = [11.574 × Box 14 ÷ Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9]	Note: Assumes no other inflows to channel except those a	e at the downstream end of construction									
Sediment Concentration in Red River mg/L Box 15 = [11.574 × Box 14 ÷ Box 13] Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9]	Flow in Red River	m^{3}/s Box 13 = [Box 3 + Box 5]									
Change in Sediment Concentration in Red River mg/L Box 16 = [Box 15 - Box 9]	Sediment Load in Red River	tonne/day Box 14 = [Box 11 + Box 12]									
	Sediment Concentration in Red River	mg/L Box 15 = [11.574 × Box 14 ÷ Box 13]									
Percent Change in Sediment Concentration in Red River % Box 17 = [(Box 15 - Box 9) ÷ Box 9 x 100]	Change in Sediment Concentration in Red River	mg/L Box 16 = [Box 15 - Box 9]									
Percent Change in Sediment Concentration in Red River % Box 17 = [(Box 15 - Box 9) ÷ Box 9 x 100]											
	Percent Change in Sediment Concentration in Red Riv	Kiver % Box 17 = $[(Box 15 - Box 9) \div Box 9 \times 100]$									
Prepared By:Katie SinclairDate Prepared:August 8, 2008	Prepared By: Katie Sinclair	Date Prepared: August 8, 2008									

APPENDIX B

MANITOBA WATER STEWARDSHIP WEEKLY RIVER FLOW REPORT RED RIVER NEAR SELKIRK



Red River Weekly Flow Near Selkirk

APPENDIX C

ENVIRONMENT CANADA WINNIPEG INT'L A, MANITOBA – DAILY DATA REPORTS JANUARY - DECEMBER 2008

Daily Data Report for January 2008

Notes on **Data Quality**.

WINNIPEG RICHARDSON INT'L A MANITOBA

Latitude: 49° 55.200' N	Longitude: 97° 13.800' W	Elevation: 238.70 m
Climate ID: 5023222	<u>WMO ID</u> : 71852	TC ID: YWG

						Daily Data Report for January 2008								
D a	Max Ter °C	Min Ten °C	<u>Mean Teı</u> °C	Heat Deg D °C	Cool Deg D °C	<u>Total Ra</u> mm	<u>Total Sn</u> cm	Total Pre- mm	Snow on G cm	Dir of Max (10's Deg	<u>Spd of Max (</u> km/h			
У	~	~	~	~	~			~			2			
<u>01</u> †	-16.5	-26.3	-21.4	39.4	0.0	М	М	0.0			<31			
<u>02</u> †	-11.1	-26.3	-18.7	36.7	0.0	М	М	0.0		19	72			
<u>03</u> †	-2.0	-12.2	-7.1	25.1	0.0	М	М	0.0		18	74			
<u>04</u> †	-3.8	-12.3	-8.1	26.1	0.0	М	М	0.0		16	59			
<u>05</u> †	-0.8	-10.6	-5.7	23.7	0.0	М	М	0.0		17	50			
<u>06</u> †	2.9	-2.5	0.2	17.8	0.0	М	М	1.5		2	46			
<u>07</u> †	-1.6	-12.6	-7.1	25.1	0.0	М	М	0.0			<31			
<u>08</u> †	-8.9	-16.0	-12.5	30.5	0.0	М	М	0.0			<31			
<u>09</u> †	-7.4	-19.1	-13.3	31.3	0.0	М	М	0.0			<31			
<u>10</u> †	-7.6	-13.2	-10.4	28.4	0.0	М	М	0.0			<31			
<u>11</u> †	-8.2	-11.8	-10.0	28.0	0.0	М	М	0.5			<31			
<u>12</u> †	-9.0	-17.6	-13.3	31.3	0.0	М	М	0.5			<31			
<u>13</u> †	-8.7	-30.5	-19.6	37.6	0.0	М	М	0.5		36	33			
<u>14</u> †	-19.8	-32.9	-26.4	44.4	0.0	М	М	0.0		2	44			
<u>15</u> †	-7.0	-20.1	-13.6	31.6	0.0	М	М	0.0		18	78			
<u>16</u> †	-9.1	-25.5	-17.3	35.3	0.0	М	М	0.0		32E	54E			
<u>17</u> †	-13.8	-25.2	-19.5	37.5	0.0	М	М	0.5		1	48			
<u>18</u> †	-23.0	-30.1	-26.6	44.6	0.0	М	М	0.0		32	41			
<u>19</u> †	-21.9	-31.4	-26.7	44.7	0.0	М	М	0.0		32	32			
<u>20</u> †	-20.9	-31.8	-26.4	44.4	0.0	М	М	0.0			<31			
21†	-14.4	-29.7	-22.1	40.1	0.0	М	М	0.0		20	33			
22†	-15.1	-31.1	-23.1	41.1	0.0	М	М	0.0			<31			
23†	-20.9	-32.5	-26.7	44.7	0.0	М	М	0.0			<31			
<u>24</u> †	-11.8	-25.8	-18.8	36.8	0.0	М	М	0.0		19	37			
25†	-14.6	-24.7	-19.7	37.7	0.0	М	М	0.0			<31			
<u>26</u> †	-12.6	-19.8	-16.2	34.2	0.0	М	М	0.0			<31			
<u>27</u> †	-3.6	-17.4	-10.5	28.5	0.0	М	М	0.5		18	46			
<u>28</u> †	-4.2	-20.0	-12.1	30.1	0.0	М	М	0.0		3	70			
<u>29</u> †	-20.0	-30.0	-25.0	43.0	0.0	М	М	0.5		32	74			
<u>30</u> †	-25.2	-32.7	-29.0	47.0	0.0	М	М	0.0			<31			
31†	-12.6	-30.4	-21.5	39.5	0.0	М	М	0.5		19	70			
Sum				1086.2	0.0	М	М	5.0						
Avg	-11.4	-22.6	-17.02											
Xtrm	2.9	-32.9								18	78			

Legend	Navigation Options
[empty] = No data available	Canada Map
M = Missing	Manitoba Map
E = Estimated	Customized Search
A = Accumulated	Nearby Stations with Data
C = Precipitation occurred, amount uncertain	1971-2000 Climate Normals
L = Precipitation may or may not have occurred	Customizable Chart

file://C:\DOCUME~1\SMoffatt\LOCALS~1\Temp\XTTGDQW0.htm

5/7/2008

Environment Canada

ent Environnement Canada

Daily Data Report for February 2008

Notes on **Data Quality**.

WINNIPEG RICHARDSON INT'L A MANITOBA

Latitude: 49° 55.200' N	Longitude: 97° 13.800' W	Elevation: 238.70 m
Climate ID: 5023222	<u>WMO ID</u> : 71852	TC ID: YWG

								Daily Data Report for February 2008							
D a	Max Ter °C	Min Ten °C	<u>Mean Teı</u> °C	Heat Deg D °C	Cool Deg D °C	<u>Total Ra</u> mm	<u>Total Sn</u> cm	<u>Total Pre</u> mm	Snow on G cm	<u>Dir of Max (</u> 10's Deg	<u>Spd of Max (</u> km/h				
У	~	~	~	~	~			~			2				
<u>01</u> †	-8.4	-23.9	-16.2	34.2	0.0	М	М	1.5		18	74				
<u>02</u> †	-19.5	-28.5	-24.0	42.0	0.0	М	М	0.0			<31				
<u>03</u> †	-8.8	-20.7	-14.8	32.8	0.0	М	М	0.5			<31				
<u>04</u> †	-10.7	-19.1	-14.9	32.9	0.0	М	М	0.5		1	48				
<u>05</u> †	-19.1	-29.0	-24.1	42.1	0.0	М	М	0.0			<31				
<u>06</u> †	-9.1	-23.1	-16.1	34.1	0.0	М	М	0.5		18	63				
<u>07</u> †	-5.9	-15.6	-10.8	28.8	0.0	М	М	0.0		19	35				
<u>08</u> †	-6.8	-17.5	-12.2	30.2	0.0	М	М	0.0		20	44				
<u>09</u> †	-9.2	-27.2	-18.2	36.2	0.0	М	М	1.5		32	69				
10†	-26.9	-32.7	-29.8	47.8	0.0	М	М	0.0		32	54				
11†	-19.1	-31.8	-25.5	43.5	0.0	М	М	0.0		20	37				
12†	-11.5	-24.6	-18.1	36.1	0.0	М	М	1.0		19	50				
<u>13</u> †	-23.0	-31.4	-27.2	45.2	0.0	М	М	0.0			<31				
14†	-24.8	-34.7	-29.8	47.8	0.0	М	М	0.0			<31				
15†	-15.7	-34.3	-25.0	43.0	0.0	М	М	0.5		2	52				
<u>16</u> †	-0.4	-15.8	-8.1	26.1	0.0	М	М	1.0		18	61				
17†	-2.0	-21.6	-11.8	29.8	0.0	М	М	1.0		34	57				
18†	-20.1	-29.9	-25.0	43.0	0.0	М	М	0.0		34	46				
<u>19</u> †	-26.7	-34.6	-30.7	48.7	0.0	М	М	0.5		36	50				
20†	-22.4	-34.7	-28.6	46.6	0.0	М	М	0.0		2	39				
21†	-11.1	-26.5	-18.8	36.8	0.0	М	М	0.0		19	41				
22†	-10.7	-24.5	-17.6	35.6	0.0	М	М	0.0			<31				
23†	-5.7	-19.1	-12.4	30.4	0.0	М	М	0.0			<31				
24†	-2.6	-14.9	-8.8	26.8	0.0	М	М	0.5		3	44				
25†	-6.1	-17.8	-12.0	30.0	0.0	М	М	0.0		36	37				
26†	-7.5	-19.3	-13.4	31.4	0.0	М	М	0.5			<31				
27†	-8.8	-22.1	-15.5	33.5	0.0	М	М	0.0			<31				
28†	-0.6	-14.3	-7.5	25.5	0.0	М	М	2.5		18	50				
29†	-3.6	-16.7	-10.2	28.2	0.0	М	М	0.0		34	67				
Sum				1049.1	0.0	Μ	М	12.0							
Avg	-12	-24.3	-18.15												
Xtrm	-0.4	-34.7								18	74				

Legend	Navigation Options
[empty] = No data available	Canada Map
M = Missing	Manitoba Map
E = Estimated	Customized Search
A = Accumulated	Nearby Stations with Data
C = Precipitation occurred, amount uncertain	1971-2000 Climate Normals
L = Precipitation may or may not have occurred	Customizable Chart
F = Accumulated and estimated	Bulk Data (2008) [CSV] [XML]
N = Temperature missing but known to be > 0	

http://www.climate.weatheroffice.ec.gc.ca/climateData/dailydata_e.html?timeframe=2&Prov=XX... 5/7/2008

[français] [Back]

Daily Data Report for March 2008

Notes on **Data Quality**.

WINNIPEG RICHARDSON INT'L A MANITOBA

Latitude: 49° 55.200' N Climate ID: 5023222 Longitude: 97° 13.800' W WMO ID: 71852 Elevation: 238.70 m <u>TC ID</u>: YWG

	Daily Data Report for March 2008										
D	Max	Min	Mean	Heat Deg	Cool Deg	<u>Total</u>	<u>Total</u>	<u>Total</u>	Snow on	Dir of Max	Spd of Max
a	Temp	Temp	Temp	Days	Days	<u>Rain</u>	Snow	Precip	Grnd	Gust	Gust
У	°C	°C	°C	°Č	°Č	mm	cm	mm	cm	10's Deg	km/h
<u>01</u> †	-1.0	-14.2	-7.6	25.6	0.0	М	М	0.5		15	54
<u>02</u> †	-1.3	-17.3	-9.3	27.3	0.0	М	М	0.0		33	70
<u>03</u> †	-17.2	-22.6	-19.9	37.9	0.0	М	М	0.0		32	37
<u>04</u> †	-10.1	-21.8	-16.0	34.0	0.0	М	М	1.5			<31
<u>05</u> †	-14.7	-27.8	-21.3	39.3	0.0	М	М	0.0			<31
<u>06</u> †	-20.1	-32.1	-26.1	44.1	0.0	М	М	0.0		32	32
<u>07</u> †	-12.9	-29.2	-21.1	39.1	0.0	М	М	1.5		2	65
<u>08</u> †	-9.1	-16.3	-12.7	30.7	0.0	М	М	0.5		18	65
<u>09</u> †	-9.9	-22.7	-16.3	34.3	0.0	М	М	0.5		19	33
<u>10</u> †	0.4	-15.1	-7.4	25.4	0.0	М	М	0.0		19	44
11†	2.3	-7.5	-2.6	20.6	0.0	М	М	0.0			<31
<u>12</u> †	2.6	-4.5	-1.0	19.0	0.0	М	М	0.0		18	50
<u>13</u> †	1.3	-7.4	-3.1	21.1	0.0	М	М	1.0		32	50
14†	-6.1	-15.7	-10.9	28.9	0.0	М	М	0.5		33	37
15†	-7.5	-20.0	-13.8	31.8	0.0	М	М	0.0			<31
16†	-0.7	-13.8	-7.3	25.3	0.0	М	М	1.0		18	63
17†	2.0	-2.0	0.0	18.0	0.0	М	М	0.0		19	61
<u>18</u> †	3.7	-6.0	-1.2	19.2	0.0	М	М	0.0		19	41
19†	-3.4	-11.8	-7.6	25.6	0.0	М	М	0.0		3	32
20†	1.5	-12.5	-5.5	23.5	0.0	М	М	0.0			<31
21†	3.4	-6.5	-1.6	19.6	0.0	М	М	0.0			<31
<u>22</u> †	-1.0	-11.0	-6.0	24.0	0.0	М	М	0.0		34	39
23†	-2.5	-16.5	-9.5	27.5	0.0	М	М	0.0		2	33
24†	0.7	-8.4	-3.9	21.9	0.0	М	М	2.5		16	59
25†	-1.9	-9.0	-5.5	23.5	0.0	М	М	0.0		36	41
<u>26</u> †	-6.8	-16.7	-11.8	29.8	0.0	М	М	0.5		2	39
<u>27</u> †	-1.6	-17.9	-9.8	27.8	0.0	М	М	0.0			<31
28†	1.7	-4.5	-1.4	19.4	0.0	М	М	0.0		18	35
29†	2.2	0.4	1.3	16.7	0.0	М	М	17.5		2	65
30†	2.5	-4.3	-0.9	18.9	0.0	М	М	2.5		29	85
31†	0.2	-5.8	-2.8	20.8	0.0	М	М	0.0		2	32
Sum				820.6	0.0	М	М	30.0			-
Avg	-3.3	-13.6	-8.45								
Xtrm	3.7	-32.1								29	85

Legend

[empty] = No data availableM - Missing

Environnement Canada

[français] [Back]

Daily Data Report for April 2008

Notes on **Data Quality**.

WINNIPEG RICHARDSON INT'L A **MANITOBA**

Latitude: 49° 55.200' N Climate ID: 5023222

Longitude: 97° 13.800' W **WMO ID:** 71852

Elevation: 238.70 m TC ID: YWG

					Daily Dat	a Report for	· April 2008				
D	Max	Min	Mean	Heat Deg	Cool Deg	Total	<u>Total</u>	<u>Total</u>	Snow on	Dir of Max	Spd of Max
a	Temp	Temp	Temp	Days	Days	<u>Rain</u>	Snow	Precip	<u>Grnd</u>	Gust	Gust
У	°C	°C	°C	°Č	°Č	mm	cm	mm X	cm	10's Deg	km/h
<u>01</u> †	2.0	-10.1	-4.1	22.1	0.0	М	М	0.0		20	35
<u>02</u> †	6.0	-2.6	1.7	16.3	0.0	М	М	0.0		24	48
<u>03</u> †	10.5	-1.9	4.3	13.7	0.0	М	М	0.0		27	46
<u>04</u> †	1.5	-5.0	-1.8	19.8	0.0	М	М	1.0			<31
<u>05</u> †	-0.9	-13.5	-7.2	25.2	0.0	М	М	0.0		4	39
<u>06</u> †	2.4	-8.5	-3.1	21.1	0.0	М	М	0.0		4	37
<u>07</u> †	6.1	-6.7	-0.3	18.3	0.0	М	М	0.0			<31
<u>08</u> †	10.7	-4.3	3.2	14.8	0.0	М	М	0.0			<31
<u>09</u> †	9.7	-3.0	3.4	14.6	0.0	М	М	0.0			<31
<u>10</u> †	10.7	-0.6	5.1	12.9	0.0	М	М	0.0		7	41
<u>11</u> †	8.4	-2.4	3.0	15.0	0.0	М	М	0.0		4	48
<u>12</u> †	7.4	-5.4	1.0	17.0	0.0	М	М	0.0			<31
<u>13</u> †	12.7	-6.4	3.2	14.8	0.0	М	М	0.0		2	37
<u>14</u> †	17.2	1.4	9.3	8.7	0.0	М	М	0.0		19	76
<u>15</u> †	19.0	4.9	12.0	6.0	0.0	М	М	0.0		18	57
<u>16</u> †	14.5	-2.1	6.2	11.8	0.0	М	М	0.0		32	50
<u>17</u> †	15.5	-5.8	4.9	13.1	0.0	М	М	0.0			<31
<u>18</u> †	20.6	3.0	11.8	6.2	0.0	М	М	0.0		14	41
<u>19</u> †	20.2	2.9	11.6	6.4	0.0	М	М	0.0		15	33
<u>20</u> †	М	5.0E	М	М	Μ	М	М	Μ		11	59
<u>21</u> †	М	М	М	М	Μ	М	М	Μ		27	48
<u>22</u> †	12.2	-3.6	4.3	13.7	0.0	М	М	0.0		19	54
<u>23</u> †	7.3	-3.4	2.0	16.0	0.0	М	М	0.5		29	46
<u>24</u> †	0.7	-2.5	-0.9	18.9	0.0	М	М	7.5		5	61
<u>25</u> †	1.6	-3.9	-1.2	19.2	0.0	М	М	0.0		1	56
<u>26</u> †	3.7	-3.1	0.3	17.7	0.0	М	М	0.0		1	61
<u>27</u> †	6.7	-7.3	-0.3	18.3	0.0	М	М	0.0		3	41
<u>28</u> †	10.3	-8.4	1.0	17.0	0.0	М	М	0.0		28	35
<u>29</u> †	15.9	-2.9	6.5	11.5	0.0	М	М	0.0		16	35
<u>30</u> †	18.0	-0.2	8.9	9.1	0.0	М	М	0.0		11	48
Sum				419.2*	0.0*	М	Μ	9.0*			
Avg	9.7	-3.3E	3.17E								
Xtrm	20.6	-13.5E								19	76

Legend

[empty] = No data available M = Missing

Environnement Canada

[français] [Back]

Daily Data Report for May 2008

Notes on **Data Quality**.

WINNIPEG RICHARDSON INT'L A **MANITOBA**

Latitude: 49° 55.200' N Climate ID: 5023222

Longitude: 97° 13.800' W **WMO ID:** 71852

Elevation: 238.70 m TC ID: YWG

	Daily Data Report for May 2008										
D	Max	Min	Mean	Heat Deg	Cool Deg	<u>Total</u>	<u>Total</u>	<u>Total</u>	Snow on	Dir of Max	Spd of Max
a	<u>Temp</u>	<u>Temp</u>	<u>Temp</u>	Days	Days	<u>Rain</u>	<u>Snow</u>	Precip	<u>Grnd</u>	Gust	Gust
У	°C	°C	°C	°Č	°Č	mm	cm	mm	cm	10's Deg	km/h
<u>01</u> †	13.8	-1.3	6.3	11.7	0.0	М	М	0.0		3	59
<u>02</u> †	10.2	-4.2	3.0	15.0	0.0	М	М	0.0		2	59
<u>03</u> †	10.1	-9.3	0.4	17.6	0.0	М	М	0.0		35	50
<u>04</u> †	4.4	-9.1	-2.4	20.4	0.0	М	М	2.0		33	33
<u>05</u> †	15.6	-6.7	4.5	13.5	0.0	М	М	0.0		28	37
<u>06</u> †	16.3	3.9	10.1	7.9	0.0	М	М	0.0		3	41
<u>07</u> †	11.0	-1.5	4.8	13.2	0.0	М	М	0.0		34	46
<u>08</u> †	12.4	-6.6	2.9	15.1	0.0	М	М	0.0		34	37
<u>09</u> †	8.3	-6.3	1.0	17.0	0.0	М	М	0.0		4	37
<u>10</u> †	9.8	-3.7	3.1	14.9	0.0	М	М	0.0		33	46
11†	16.5	-4.9	5.8	12.2	0.0	М	М	0.0		15	35
<u>12</u> †	10.0	4.9	7.5	10.5	0.0	М	М	14.5		9	59
<u>13</u> †	15.6	4.3	10.0	8.0	0.0	М	М	5.5		3	39
14†	21.2	4.3	12.8	5.2	0.0	М	М	0.0		22	41
<u>15</u> †	22.3	4.7	13.5	4.5	0.0	М	М	0.0		33	48
<u>16</u> †	22.6	8.0	15.3	2.7	0.0	М	М	0.0		32	70
<u>17</u> †	19.1	-0.1	9.5	8.5	0.0	М	М	0.0		31E	74E
<u>18</u> †	16.3	-3.3	6.5	11.5	0.0	М	М	0.0		10	32
<u>19</u> †	13.8	1.3	7.6	10.4	0.0	М	М	2.0		33	39
20†	16.3	-2.3	7.0	11.0	0.0	М	М	0.0		3	46
<u>21</u> †	16.2	-1.9	7.2	10.8	0.0	М	М	0.0		2	48
22†	17.8	-0.2	8.8	9.2	0.0	М	М	0.0		6	41
23†	22.3	5.1	13.7	4.3	0.0	М	М	0.0		12	39
<u>24</u> †	25.3	8.5	16.9	1.1	0.0	М	М	0.5		15	56
25†	17.5	4.4	11.0	7.0	0.0	М	М	10.0		4	63
26†	12.5	1.2	6.9	11.1	0.0	М	М	1.5		4	61
27†	18.4	-3.2	7.6	10.4	0.0	М	М	0.0			<31
28†	22.1	5.8	14.0	4.0	0.0	М	М	0.0			<31
29†	23.5	7.5	15.5	2.5	0.0	М	М	0.0		18	46
30†	20.0	10.7	15.4	2.6	0.0	М	М	2.5			<31
31†	19.9	9.7	14.8	3.2	0.0	М	М	2.0			<31
Sum				297.0	0.0	М	М	40.5			
Avg	16.2	0.6	8.4								
Xtrm	25.3	-9.3								31E	74E

Legend

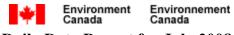
[empty] = No data available M - Missing

Environment Environnement Canada Canada

Daily Data Report for June 2008

Notes on **Data Quality**.

WINNIPEG RICHARDSON INT'L A MANITOBA


Latitude: 49° 55.200' N	Longitude: 97° 13.800' W	Elevation: 238.70 m
Climate ID: 5023222	WMO ID: 71852	TC ID: YWG

								ne 2008			
D	Max Ter	Min Ten	<u>Mean Tei</u>	<u>Heat Deg D</u>	Cool Deg D	<u>Total Ra</u>	Total Sno	Total Pre	Snow on G	<u>Dir of Max (</u>	Spd of Max (
a y	°C	°C	°C	°C	°C	mm	cm	mm	cm	10's Deg	km/h
, , , , , , , , , , , , , , , , , , ,	~	~	~	~	~			~			~
<u>01</u> †	19.7	4.2	12.0	6.0	0.0	М	М	0.5		36	35
<u>02</u> †	18.1	-0.1	9.0	9.0	0.0	М	М	0.0		5	35
<u>03</u> †	21.1	3.3	12.2	5.8	0.0	М	М	0.0		14	52
<u>04</u> †	17.0	7.4	12.2	5.8	0.0	М	М	0.5		15	41
<u>05</u> †	23.3	3.4	13.4	4.6	0.0	М	М	0.0		11	44
<u>06</u> †	15.4	10.7	13.1	4.9	0.0	М	М	38.5		4	57
<u>07</u> †	23.2	8.6	15.9	2.1	0.0	М	М	0.0		24	56
<u>08</u> †	24.9	5.4	15.2	2.8	0.0	М	М	0.0		25	44
<u>09</u> †	15.8	10.7	13.3	4.7	0.0	М	М	25.0		8	52
<u>10</u> †	17.8	5.7	11.8	6.2	0.0	М	М	0.0		4	32
<u>11</u> †	16.3	7.8	12.1	5.9	0.0	М	М	14.5		8	65
<u>12</u> †	19.9	8.6	14.3	3.7	0.0	М	М	2.5		11	67
<u>13</u> †	17.8	9.9	13.9	4.1	0.0	М	М	2.5		29	48
<u>14</u> †	18.3	7.2	12.8	5.2	0.0	М	М	0.5		30	50
<u>15</u> †	17.4	5.7	11.6	6.4	0.0	М	М	0.0		30	39
<u>16</u> †	23.1	3.4	13.3	4.7	0.0	М	М	0.0			<31
<u>17</u> †	23.9	7.9	15.9	2.1	0.0	М	М	0.0			<31
<u>18</u> †	26.3	10.7	18.5	0.0	0.5	М	М	0.5		30	72
<u>19</u> †	25.1	10.1	17.6	0.4	0.0	М	М	0.5		33	39
20†	23.0	11.7	17.4	0.6	0.0	М	М	0.0		31	46
<u>21</u> †	25.1	10.0	17.6	0.4	0.0	М	М	0.0		35	69
22†	24.9	8.2	16.6	1.4	0.0	М	М	0.0		3	33
23†	26.8	10.1	18.5	0.0	0.5	М	М	2.0		18	35
24†	27.5	11.9	19.7	0.0	1.7	М	М	0.5			<31
25†	25.8	14.7	20.3	0.0	2.3	М	М	0.5		28	39
26†	27.5	12.5	20.0	0.0	2.0	М	М	0.0			<31
27†	24.7	14.5	19.6	0.0	1.6	М	М	1.0		32E	37E
28†	23.9	15.0	19.5	0.0	1.5	М	М	14.5		2	61
<u>29</u> †	26.2	13.0	19.6	0.0	1.6	М	М	0.0		2	32
30†	29.7	14.5	22.1	0.0	4.1	М	М	0.0		24	37
Sum				86.8	15.8	М	М	104.0			
Avg	22.3	8.9	15.6								
Xtrm	29.7	-0.1								30	72

Legend

0-----

Navigation Options

Daily Data Report for July 2008

Notes on **Data Quality**.

WINNIPEG RICHARDSON AWOS MANITOBA

Latitude: 49° 55.200' N	Longitude: 97° 13.800' W	Elevation: 238.70 m
Climate ID: 5023226	<u>WMO ID</u> : 71852	TC ID: YWG

						Daily Data Report for July 2008						
D a	Max Ter °C	Min Ten °C	<u>Mean Teı</u> °C	Heat Deg D °C	<u>Cool Deg D</u> °C	<u>Total Ra</u> mm	<u>Total Sn</u> cm	<u>Total Pre</u> mm	Snow on G cm	<u>Dir of Max (</u> 10's Deg	<u>Spd of Max (</u> km/h	
y	~	~	~	~	~			~			~	
01												
02												
03†	23.6	6.8	15.2	2.8	0.0	М	М	0.0			<31	
04†	29.0	13.5	21.3	0.0	3.3	М	М	0.0		22	48	
05†	29.4	15.5	22.5	0.0	4.5	М	М	0.0		19	44	
06†	20.9	9.1	15.0	3.0	0.0	М	М	0.0		33	44	
07†	19.3	8.6	14.0	4.0	0.0	М	М	11.5		16	44	
08†	20.2	12.8	16.5	1.5	0.0	М	М	1.0		32	50	
09†	22.3	10.8	16.6	1.4	0.0	М	М	0.0		32	39	
10†	24.8	10.5	17.7	0.3	0.0	М	М	0.0		1	41	
11†	24.4	14.4	19.4	0.0	1.4	М	М	10.5		15	63	
12†	16.6	12.5	14.6	3.4	0.0	М	М	11.0		28	74	
13†	23.1	11.1	17.1	0.9	0.0	М	М	0.0		33	46	
14†	23.7	12.0	17.9	0.1	0.0	М	М	0.0			<31	
15†	23.0	10.0	16.5	1.5	0.0	М	М	2.0		33	39	
16†	21.2	9.7	15.5	2.5	0.0	М	М	1.0		10	37	
17†	22.9	13.1	18.0	0.0	0.0	М	М	0.0			<31	
18†	24.7	9.7	17.2	0.8	0.0	М	М	0.0			<31	
19†	25.6	12.9	19.3	0.0	1.3	М	М	0.0		19	33	
20†	24.6	13.0	18.8	0.0	0.8	М	М	3.0		1	32	
21†	25.7	10.9	18.3	0.0	0.3	М	М	0.0			<31	
22†	27.5	15.1	21.3	0.0	3.3	М	М	0.5		16	35	
23†	24.0	18.0	21.0	0.0	3.0	М	М	3.0		14	57	
24†	27.6	18.8	23.2	0.0	5.2	М	М	0.5		20	52	
25†	26.1	14.2	20.2	0.0	2.2	М	М	М		31E	48E	
26†	29.5	12.6	21.1	0.0	3.1	М	М	0.0		32	41	
27†	25.7	10.0	17.9	0.1	0.0	М	М	0.0			<31	
28†	27.5	11.6	19.6	0.0	1.6	М	М	7.5		3	61	
29†	24.0	14.6	19.3	0.0	1.3	М	М	1.0		28	57	
30†	25.7	11.8	18.8	0.0	0.8	М	М	0.0			<31	
31†	26.2	14.6	20.4	0.0	2.4	М	М	0.5		29	39	
Sum				22.3*	34.5*	Μ	М	53.0*				
Avg	24.4	12.4	18.4									
Xtrm	29.5	6.8								28*	74*	

Legend	Navigation Options
[empty] = No data available	Canada Map
M = Missing	Manitoba Map
E = Estimated	Customized Search
A = Accumulated	Nearby Stations with Data
C = Precipitation occurred, amount uncertain	Customizable Chart
L = Precipitation may or may not have occurred	Bulk Data (2008) [CSV1 [XML1

file://C:\DOCUME~1\SMoffatt\LOCALS~1\Temp\3ULZC5A1.htm

Environment Environnement Canada Canada

Daily Data Report for August 2008

Notes on **Data Quality**.

WINNIPEG RICHARDSON AWOS	
MANITOBA	

Latitude: 49° 55.200' N	Longitude: 97° 13.800' W	Elevation: 238.70 m
Climate ID: 5023226	<u>WMO ID</u> : 71852	TC ID: YWG

						Daily Data Report for August 2008							
D a	Max Ter °C	Min Ten °C	<u>Mean Teı</u> °C	Heat Deg D °C	Cool Deg D °C	<u>Total Ra</u> mm	<u>Total Sne</u> cm	<u>Total Pre</u> mm	Snow on G cm	<u>Dir of Max (</u> 10's Deg	<u>Spd of Max (</u> km/h		
y	15	~	15	~	~			N			~		
<u>01</u> †	28.2	9.4	18.8	0.0	0.8	М	М	0.0		18	32		
<u>02</u> †	22.3	17.5	19.9	0.0	1.9	М	М	1.0		22	65		
<u>03</u> †	24.3	15.0	19.7	0.0	1.7	М	М	0.0		35	32		
<u>04</u> †	24.0	13.5	18.8	0.0	0.8	М	М	0.0		24	35		
<u>05</u> †	25.1	11.1	18.1	0.0	0.1	М	М	0.0			<31		
<u>06</u> †	26.1	12.3	19.2	0.0	1.2	М	М	0.0		35	39		
<u>07</u> †	27.9	9.3	18.6	0.0	0.6	М	М	0.0			<31		
<u>08</u> †	28.7	13.5	21.1	0.0	3.1	М	М	0.0			<31		
<u>09</u> †	27.6	10.4	19.0	0.0	1.0	М	М	0.0		7	32		
<u>10</u> †	29.4	12.8	21.1	0.0	3.1	М	М	0.0		18	33		
<u>11</u> †	20.5	16.2	18.4	0.0	0.4	М	М	30.5		16	39		
<u>12</u> †	19.0	12.9	16.0	2.0	0.0	М	М	29.5		14	37		
<u>13</u> †	26.8	12.1	19.5	0.0	1.5	М	М	1.0			<31		
<u>14</u> †	27.5	14.6	21.1	0.0	3.1	М	М	0.0		13	41		
<u>15</u> †	29.9	15.3	22.6	0.0	4.6	М	М	0.0			<31		
<u>16</u> †	30.2	15.4	22.8	0.0	4.8	М	М	0.0			<31		
<u>17</u> †	32.3	16.0	24.2	0.0	6.2	М	М	0.0		1	35		
<u>18</u> †	24.4	12.7	18.6	0.0	0.6	М	М	0.0			<31		
<u>19</u> †	29.6	11.9	20.8	0.0	2.8	М	М	0.0		16	41		
<u>20</u> †	30.6	19.1	24.9	0.0	6.9	М	М	0.0		20	67		
<u>21</u> †	30.2	19.2	24.7	0.0	6.7	М	М	13.5		19	67		
22†	22.6	12.2	17.4	0.6	0.0	М	М	18.5		29	59		
<u>23</u> †	16.6	7.2	11.9	6.1	0.0	М	М	0.0		29	50		
<u>24</u> †	20.8	4.5	12.7	5.3	0.0	М	М	0.0			<31		
<u>25</u> †	28.2	10.2	19.2	0.0	1.2	М	М	0.0		17	52		
<u>26</u> †	28.1	15.7	21.9	0.0	3.9	М	М	1.5		18	72		
<u>27</u> †	21.2	11.1	16.2	1.8	0.0	М	М	0.5		25	46		
<u>28</u> †	23.2	11.4	17.3	0.7	0.0	М	М	0.0		30	44		
<u>29</u> †	23.2	10.6	16.9	1.1	0.0	М	М	0.5		29	48		
<u>30</u> †	29.3	9.6	19.5	0.0	1.5	М	М	0.0		19	65		
31†	31.4	19.5	25.5	0.0	7.5	М	М	0.0		18	54		
Sum				17.6	66.0	М	М	96.5					
Avg	26.1	13	19.54										
Xtrm	32.3	4.5								18	72		

Legend	Navigation Options
[empty] = No data available	Canada Map
M = Missing	Manitoba Map
E = Estimated	Customized Search
A = Accumulated	Nearby Stations with Data
C = Precipitation occurred, amount uncertain	Customizable Chart
L = Precipitation may or may not have occurred	Bulk Data (2008) [CSV1 [XML]

http://climate.weatheroffice.ec.gc.ca/climateData/dailydata_e.html?timeframe=2&Prov=XX&Stati... 9/29/2008

Notices: As of July 24, 2008 changes were made in how data are accessed at 25 stations. Please click here for further details.

Daily Data Report for September 2008

Notes on **Data Quality**.

WINNIPEG RICHARDSON AWOS **MANITOBA**

Latitude: 49° 55.200' N	Longitude: 97° 13.800' W	Elevation: 238.70 m
Climate ID: 5023226	WMO ID: 71852	TC ID: YWG

							Daily Data Report for September 2008						
D a	Max Ter °C	Min Ten °C	<u>Mean Teı</u> °C	Heat Deg D °C	Cool Deg D °C	<u>Total Ra</u> mm	<u>Total Sn</u> cm	<u>Total Pre</u> mm	Snow on G cm	Dir of Max (10's Deg	<u>Spd of Max (</u> km/h		
У	~	N	~	~	~			~			~		
<u>01</u> †	19.5	11.6	15.6	2.4	0.0	М	М	29.0		33	35		
<u>02</u> †	13.5	7.5	10.5	7.5	0.0	М	М	1.5		32	54		
<u>03</u> †	20.8	5.6	13.2	4.8	0.0	М	М	0.0		29	32		
<u>04</u> †	18.3	8.3	13.3	4.7	0.0	М	М	0.0			<31		
<u>05</u> †	16.5	8.1	12.3	5.7	0.0	М	М	2.5			<31		
<u>06</u> †	19.0	6.1	12.6	5.4	0.0	М	М	3.5		27	46		
<u>07</u> †	15.3	3.5	9.4	8.6	0.0	М	М	2.5		33	50		
<u>08</u> †	16.2	2.9	9.6	8.4	0.0	М	М	0.0		29	33		
<u>09</u> †	22.2	4.1	13.2	4.8	0.0	М	М	М			<31		
<u>10</u> †	21.6	10.8	16.2	1.8	0.0	М	М	0.0		19	37		
<u>11</u> †	20.8	8.3	14.6	3.4	0.0	М	М	0.0			<31		
<u>12</u> †	25.4	11.0	18.2	0.0	0.2	М	М	0.0		25	41		
<u>13</u> †	18.5	11.1	14.8	3.2	0.0	М	М	0.0		1	57		
<u>14</u> †	16.8	6.1	11.5	6.5	0.0	М	М	0.5		1	33		
<u>15</u> †	20.4	9.6	15.0	3.0	0.0	М	М	0.0		30E	35E		
<u>16</u> †	20.9	5.5	13.2	4.8	0.0	М	М	0.0		32	46		
<u>17</u> †	13.8	7.2	10.5	7.5	0.0	М	М	0.5			<31		
<u>18</u> †	29.2	9.9	19.6	0.0	1.6	М	М	0.0		18	50		
<u>19</u> †	21.2	5.5	13.4	4.6	0.0	М	М	0.0		32	50		
<u>20</u> †	13.8	0.3	7.1	10.9	0.0	М	М	0.0			<31		
<u>21</u> †	24.7	7.6	16.2	1.8	0.0	М	М	0.0		14	37		
<u>22</u> †	22.6	15.9	19.3	0.0	1.3	М	М	5.0		18	46		
<u>23</u> †	19.3	11.9	15.6	2.4	0.0	М	М	21.0		31	44		
<u>24</u> †	17.7	7.9	12.8	5.2	0.0	М	М	11.0		27	44		
<u>25</u> †	22.2	9.0	15.6	2.4	0.0	М	М	0.0		20	48		
<u>26</u> †	18.4	4.7	11.6	6.4	0.0	М	М	0.0		2	56		
<u>27</u> †	15.1	-0.5	7.3	10.7	0.0	М	М	0.0			<31		
<u>28</u> †	17.1	8.1	12.6	5.4	0.0	М	М	0.0		17	50		
<u>29</u> †	10.9	3.1	7.0	11.0	0.0	М	М	0.0		34	52		
<u>30</u> †	15.2	1.5	8.4	9.6	0.0	М	М	0.0			<31		
Sum				152.9	3.1	М	Μ	77.0*					
Avg	18.9	7.1	12.99										
Xtrm	29.2	-0.5								1	57		

[empty] = No data available M = Missing

Legend

Canada Map

Navigation Options

file://C:\DOCUME~1\SMoffatt\LOCALS~1\Temp\L3KS91CJ.htm

Manitoba Map

Daily Observation Data | Canada's National Climate Archive

nment Environnement a Canada

Notices: As of July 24, 2008 changes were made in how data are accessed at 25 stations. <u>Please click here for further details.</u>

Daily Data Report for October 2008

Notes on *Data Quality*.

WINNIPEG RICHARDSON AWOS MANITOBA

Latitude: 49° 55.200' N	Longitude: 97° 13.800' W	Elevation: 238.70 m
Climate ID: 5023226	WMO ID: 71852	TC ID: YWG

Note: Outreach Officer Mr. Dale Marciski provided rain amounts to fill in missing data (M)

								Daily Data Report for October 2008				
D	<u>Max Ter</u>	Min Ten	<u>Mean Tei</u>	<u>Heat Deg D</u>	Cool Deg D	<u>Total Ra</u>	Total Sno	Total Pre	Snow on G	Dir of Max (Spd of Max	
a	°C	°C	°C	°C	°C	mm	cm	mm	cm	10's Deg	km/h	
У	~	~	~	~	~			~			~	
<u>01</u> †	16.9	1.7	9.3	8.7	0.0	М	М	0.0			<31	
<u>02</u> †	14.2	2.6	8.4	9.6	0.0	М	М	0.0		4	33	
<u>03</u> †	14.1	1.3	7.7	10.3	0.0	М	М	0.0			<31	
<u>04</u> †	18.3	4.6	11.5	6.5	0.0	М	М	0.0		18	37	
<u>05</u> †	18.4	6.4	12.4	5.6	0.0	М	М	0.0		13	56	
<u>06</u> †	16.0	10.2	13.1	4.9	0.0	М	М	13.0		14	57	
<u>07</u> †	15.0	5.6	10.3	7.7	0.0	М	М	0.0			<31	
<u>08</u> †	14.7	5.9	10.3	7.7	0.0	М	М	0.5		3	70	
<u>09</u> †	10.7	3.8	7.3	10.7	0.0	М	М	0.5		28	65	
<u>10</u> †	10.3	-0.8	4.8	13.2	0.0	М	М	0.5			<31	
<u>11</u> †	8.0	4.2	6.1	11.9	0.0	М	М	0.0		3	37	
<u>12</u> †	9.3	5.7	7.5	10.5	0.0	М	М	24.5		3	37	
<u>13</u> †	7.6	2.3	5.0	13.0	0.0	М	М	1.0		25	39	
<u>14</u> †	13.5	-0.2	6.7	11.3	0.0	М	М	0.5		18	52	
<u>15</u> †	7.6	4.4	6.0	12.0	0.0	М	М	0.0		30	54	
16†	11.1	-0.2	5.5	12.5	0.0	М	М	м 0	.0		<31	
17†	12.0	-1.6	5.2	12.8	0.0	М	М	0.0		2	39	
18†	14.4	6.3	10.4	7.6	0.0	М	М	0.0		18	50	
<u>19</u> †	12.8	-2.5	5.2	12.8	0.0	М	М	0.0		33	37	
20†	8.9	-4.8	2.1	15.9	0.0	М	М	м О	.0		<31	
21†	10.7	0.1	5.4	12.6	0.0	М	М		.0	18	69	
22†	7.9	3.9	5.9	12.1	0.0	М	М	-	.3	19	50	
23†	8.6	1.5	5.1	12.9	0.0	М	М	0.0	.5	20	39	
24†	12.5	1.6	7.1	10.9	0.0	М	М	0.0		19	32	
25†	13.5	4.0	8.8	9.2	0.0	М	М	M 2	0	33	63	
26†	5.8	-1.8	2.0	16.0	0.0	М	М	M 2		33	80	
27	1.8	-2.9	-0.6	18.6	0.0	M	M	0.0		33	54	
28†	10.3	-3.4	3.5	14.5	0.0	M	M	0.0			<31	
<u>29</u> †	13.1	-3.0	5.1	12.9	0.0	M	M		.0	18	56	
<u>30</u> †	17.4	-1.7	7.9	10.1	0.0	M	M		.0	30	48	
<u>30</u> †	7.6E	-5.5E	1.1E	16.9E	0.0E	M	M	0.0	.0	50	<31	
Sum		0.011		351.9E	0.0E	M	M	40.5 * 4	9.2		-51	
Avg	11.7E	1.5E	6.62E	001.71	0.01			1010 1	0.2			
Xtrm	11.7E	-5.5E	0.041							33	80	

Legend

[empty] = No data available

Canada Map

Navigation Options

Notices: As of July 24, 2008 changes were made in how data are accessed at 25 stations. Please click here for further details.

Daily Data Report for November 2008

Notes on **Data Quality**.

WINNIPEG RICHARDSON AWOS **MANITOBA**

Latitude: 49° 55.200' N	Longitude: 97° 13.800' W	Elevation: 238.70 m
Climate ID: 5023226	WMO ID: 71852	TC ID: YWG

1								Daily Data Report for November 2008					
D a	Max Ter °C	<u>Min Ten</u> °C	<u>Mean Teı</u> °C	Heat Deg D °C	Cool Deg D °C	<u>Total Ra</u> mm	<u>Total Sn</u> cm	Total Prem mm	Snow on G cm	Dir of Max (10's Deg	<u>Spd of Max (</u> km/h		
У	N	N	~	~	~			~			~		
<u>01</u> †	12.5	-1.0	5.8	12.2	0.0	М	М	0.0		17	50		
<u>02</u> †	11.4	-0.3	5.6	12.4	0.0	М	М	0.0		18	44		
<u>03</u> †	18.8	1.0	9.9	8.1	0.0	М	М	0.0		17	54		
<u>04</u> †	15.2	2.3	8.8	9.2	0.0	М	М	0.0		23	39		
<u>05</u> †	7.4	3.2	5.3	12.7	0.0	М	М	0.0		3	56		
<u>06</u> †	3.8	-0.1	1.9	16.1	0.0	М	М	25.5		3	69		
<u>07</u> †	0.1	-3.9	-1.9	19.9	0.0	М	М	4.5		3	48		
<u>08</u> †	-3.8	-6.5	-5.2	23.2	0.0	М	М	0.0			<31		
<u>09</u> †	-5.4	-12.6	-9.0	27.0	0.0	М	М	0.0		36	33		
<u>10</u> †	-5.5	-14.6	-10.1	28.1	0.0	М	М	0.0			<31		
11†	0.2	-8.6	-4.2	22.2	0.0	М	М	0.0		18	56		
<u>12</u> †	0.6	0.1	0.4	17.6	0.0	М	М	2.5		19	46		
13†	1.1	0.2	0.7	17.3	0.0	М	М	8.5		18	37		
<u>14</u> †	0.3	-6.1	-2.9	20.9	0.0	М	М	0.5		35	54		
<u>15</u> †	-2.8	-11.3	-7.1	25.1	0.0	М	М	0.0			<31		
16†	-1.3	-13.5	-7.4	25.4	0.0	М	М	0.5		М	39		
17†	-7.4	-16.0	-11.7	29.7	0.0	М	М	0.0			<31		
18†	-2.0	-10.7	-6.4	24.4	0.0	М	М	0.5		17	48		
<u>19</u> †	-2.7	-11.7	-7.2	25.2	0.0	М	М	0.0		33	44		
20†	-10.6	-17.7	-14.2	32.2	0.0	М	М	0.0		3	39		
21†	-9.3	-19.1	-14.2	32.2	0.0	М	М	0.0			<31		
22†	-2.2	-14.4	-8.3	26.3	0.0	М	М	0.0		2	39		
23†	1.7	-7.1	-2.7	20.7	0.0	М	М	0.0		21	37		
24†	-1.0	-9.2	-5.1	23.1	0.0	М	М	0.0		34	44		
25†	-0.6	-11.4	-6.0	24.0	0.0	М	М	0.0		18	46		
26†	0.9	-12.2	-5.7	23.7	0.0	М	М	0.0		17	37		
27	1.2	-12.2	-5.5	23.5	0.0	М	М	2.0		33	54		
28†	-6.5	-15.6	-11.1	29.1	0.0	М	М	0.0			<31		
<u>29</u> †	-6.7	-8.5	-7.6	25.6	0.0	M	M	0.0			<31		
<u>30</u> †	-5.8	-16.7	-11.3	29.3	0.0	M	M	0.0		33	35		
Sum	2.0	10.7		666.4	0.0	M	M	44.5			20		
Avg	0.1	-8.5	-4.21	000.1		178							
Xtrm	18.8	-19.1	-1,21							3*	69		

[empty] = No data available M = Missing

Legend

Canada Map

Navigation Options

file://C:\DOCUME~1\SMoffatt\LOCALS~1\Temp\6ZJOGAAB.htm

Manitoba Map

Canada

nt Environnement Canada

Home » Climate Data Online » Daily Data

Notices:

As of July 24, 2008 changes were made in how data are accessed at 25 stations. <u>Please click here</u> for further details.

Daily Data Report for December 2008

Notes on Data Quality.

WINNIPEG RICHARDSON AWOS MANITOBA

Latitude: 49° 55.200' N			Longitude: 97° 13.800' W					Elevation: 238.70 m			
Climate ID: 5023226	Climate ID: 5023226			WMO ID: 71852				TC ID: YWG			
					_						
Previous Month	Dece	mber	200)8 Go	D			<u>Next</u> №	<u>Ionth</u>		
					_						
	Dai	ly Data	Repor	t for Dec	cembe	er 200	8				
D	<u>Max</u>	<u>Min</u>	<u>Mean</u>	<u>Heat</u>				<u>Total</u>			<u>Spd</u>
a	Temp °C	<u>Temp</u> °C	<u>Temp</u> °C	Deg				Precip		of	<u>of</u>
У	<u>~</u>	<u>~</u>	<u>//</u>	Days °C	Days °C	mm	cm	mm M	Grnd cm	<u>Max</u> Gust	<u>Max</u> Gust
				~	~				CIII		km/h
										Deg	~
<u>01</u> †		-20.4	-12.8	30.8	0.0	М	M	1.5		18	63
<u>02</u> +		-12.4	-5.8	23.8	0.0	М	M	0.0		33	72
<u>03</u> †	-10.2		-14.3	32.3		М	M	0.0		35	41
<u>04</u> †	-10.4		-13.5	31.5		М	M	0.0		29	35
<u>05</u> †		-14.2	-11.2	29.2		М	М	1.0		1	54
<u>06</u> †	-12.7		-18.3	36.3		М	М	0.0		35	48
<u>07</u> †	-12.2		-17.9	35.9	0.0	М	М	1.5		16	33
<u>08</u> †	-13.4		-18.5	36.5		М	М	0.0		2	32
<u>09</u> †	-16.5		-20.6	38.6	0.0	М	М	0.0			<31
<u>10</u> ⁺	-12.9		-18.4	36.4		M	М	4.0		1	37
<u>11</u> †	-20.6		-25.6	43.6	0.0	M	М	0.5		10	<31
<u>12</u> †		-26.2	-16.7	34.7		M	М	1.0		19	41
<u>13</u> †		-26.0	-17.7	35.7		M	M	0.0		2	52
<u>14</u> †	-24.9		-25.9	43.9	0.0	M	M	0.5		2	57
<u>15</u> †	-24.6		-27.5	45.5		M	M	0.0		34	39
<u>16</u> †	-21.0		-24.0	42.0		M	M	0.5		19	44
<u>17</u> † <u>18</u> †	-21.2 -21.2		-24.5 -24.3	42.5 42.3		M M	M M	0.0 0.5		4	<31 32
19†	-21.2		-24.5 -22.1	42.3	0.0	M	M	1.0		4	<31
<u>19</u> 1 <u>20</u> †	-17.2		-22.1	40.1 35.6		M	M	6.5		4	41
<u>20</u> 1 <u>21</u> †	-10.5		-21.7	39.7	0.0	M	M	0.0		4	56
<u>21</u> †	-17.4		-21.7	39.7 42.7	0.0	I™I M	M	0.0		T	<31
<u> <u>~ ~</u> '</u>	-20.2	-23.2	-24./	42.7	0.0	1*1	1*1	0.0			<21

Canada

Previous Month	Dece	ember	2008	B Go]			<u>Next Month</u>		
Xtrm	0.9	- 30.8							33	72
Avg	14.7	23.9	19.29							
Sum	_	_	-	157.0	0.0	М	М	21.0		
<u>31</u> †	-15.4	-26.0	-20.7	38.7	0.0	М	М	0.0	19	41
<u>30</u> †	-20.7	-27.8	-24.3	42.3	0.0	М	М	0.0		<31
<u>29</u> †	-12.2	-23.7	-18.0	36.0	0.0	М	М	0.0	34	37
<u>28</u> †	-15.8	-22.5	-19.2	37.2	0.0	М	М	0.0		<31
<u>27</u> †	-10.7	-21.8	-16.3	34.3	0.0	М	М	0.5		<31
<u>26</u> †	-	-10.7	-8.8	26.8	0.0	М	М	0.5		<31
<u>25</u> †		-23.6	-17.0	35.0	0.0	M	M	0.5	18	44
24†		-30.8	-27.0	45.0	0.0	M	M	0.0		<31
<u>23</u> †	-17.3	-30.8	-24.1	42.1	0.0	М	М	1.0		<31

Legend		Navigation Options
[empty] = No data available		Canada Map
M = Missing		Manitoba Map
E = Estimated		Customized Search
A = Accumulated		Nearby Stations with Data
C = Precipitation occurred, amount u	ncertain	Customizable Chart
L = Precipitation may or may not have	ve occurred	Bulk Data (2008) [CSV] [XML]
F = Accumulated and estimated		
N = Temperature missing but known	to be > 0	
Y = Temperature missing but known	to be < 0	
S = More than one occurrence		
T = Trace		
* = The value displayed is based on	incomplete data	
<pre>† = Data for this day has undergone quality checking</pre>	only preliminary	

Date Modified: 2008-10-09